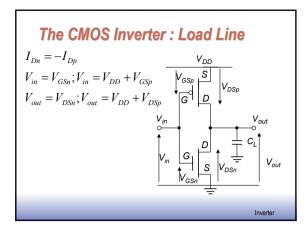
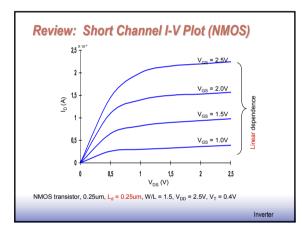
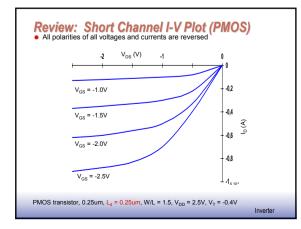


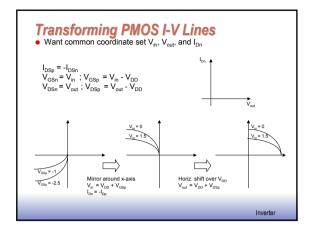
CMOS Properties

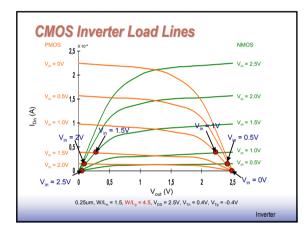

- \Box Full rail-to-rail swing \Rightarrow high noise margins
 - Logic levels not dependent upon the relative device sizes \Rightarrow transistors can be minimum size \Rightarrow ratioless
- $\label{eq:approx_state} \begin{array}{l} \square \mbox{ Always a path to } V_{dd} \mbox{ or GND in steady state } \Rightarrow \mbox{ low output impedance (output resistance in } k\Omega \mbox{ range}) \Rightarrow \mbox{ large fan-out (albeit with degraded performance)} \end{array}$
- □ Extremely high input resistance (gate of MOS transistor is near perfect insulator) ⇒ nearly zero steady-state input current
- $\hfill\square$ No direct path steady-state between power and ground \Rightarrow no static power dissipation
- Propagation delay function of load capacitance and resistance of transistors

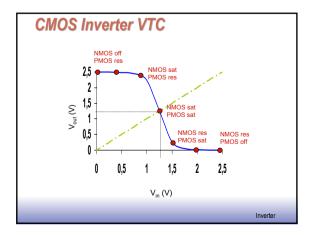
Inverter

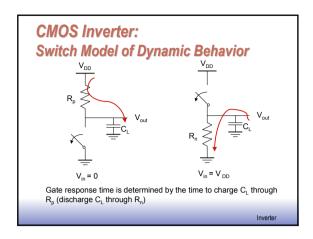

Inverter

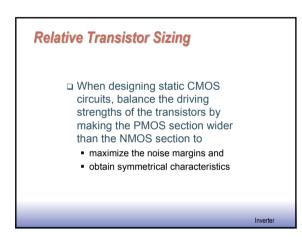

Voltage Transfer Characteristic

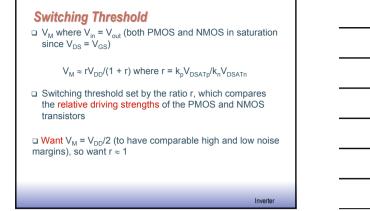












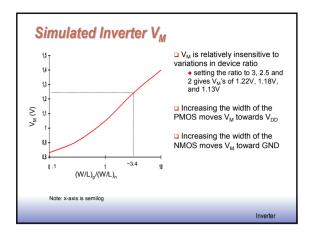
Switching Threshold As a Function of Transistor Ratio

$$\begin{split} & \mathsf{V}_{\mathsf{M}} \text{ where } \mathsf{V}_{\mathsf{IN}} = \mathsf{V}_{\mathsf{OUT}} \text{ (both PMOS and NMOS in saturation since } \mathsf{V}_{\mathsf{GS}} = \mathsf{V}_{\mathsf{DS}} \text{)} \\ & \mathsf{Velocity-Saturation } \mathsf{V}_{\mathsf{DSAT}} < \mathsf{V}_{\mathsf{M}} - \mathsf{V}_{\mathsf{T}} \\ & \mathsf{I}_{\mathsf{Dn}} + \mathsf{I}_{\mathsf{Dp}} = \mathsf{0} \\ & k_{n} V_{\textit{DSATn}} \left(V_{\mathit{M}} - V_{\mathit{Tn}} - \frac{V_{\textit{DSATn}}}{2} \right) + k_{p} V_{\textit{DSATp}} \left(V_{\mathit{M}} - V_{\textit{DD}} - V_{\mathit{Tn}} - \frac{V_{\textit{DSATn}}}{2} \right) = \mathsf{0} \\ & \mathsf{V}_{\mathit{M}} = \frac{\left(V_{\mathit{Tn}} + \frac{V_{\textit{DSATn}}}{2} \right) + r \left(V_{\textit{DD}} + V_{\mathit{Tp}} + \frac{V_{\textit{DSATp}}}{2} \right) \\ & \mathsf{1} + r \\ & \mathsf{V}_{\mathit{M}} \approx \frac{r V_{\textit{DD}}}{k_{n} V_{\textit{DSATn}}} = \frac{\upsilon_{\textit{satp}} W_{p}}{\upsilon_{\textit{satn}} W_{n}} \\ & \mathsf{V}_{\mathit{M}} \approx \frac{r V_{\textit{DD}}}{1 + r}; V_{\textit{DD}} >> V_{\mathit{T}} + V_{\textit{DSAT}} \end{split}$$

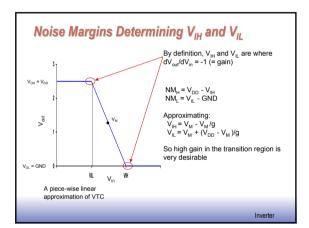
5

Electronique Numerique Integree

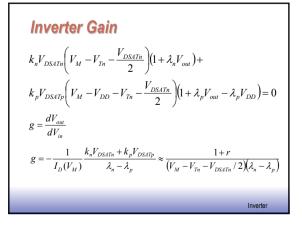
Switching Threshold As a
Function of Transistor Ratio

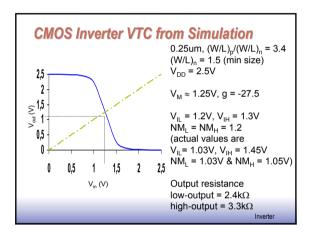

$$k_n V_{DSATn} \left(V_M - V_{Tn} - \frac{V_{DSATn}}{2} \right) + k_p V_{DSATp} \left(V_M - V_{DD} - V_{Tn} - \frac{V_{DSATn}}{2} \right) = 0$$

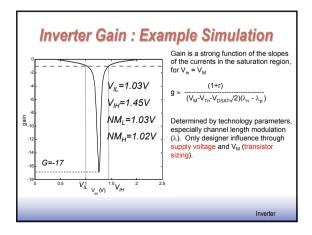
$$k = k' \frac{W}{L}$$


$$\frac{(W/L)_p}{(W/L)_n} = \frac{k'_n V_{DSATp} (V_M - V_{Tn} - V_{DSATn}/2)}{k'_p V_{DSATp} (V_{DD} - V_M + V_{Tp} + V_{DSATp}/2)}$$
Inverse

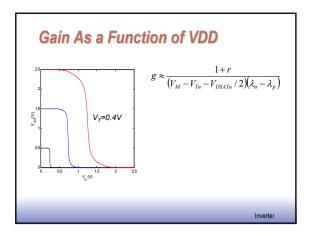
Swit	chin	g Th	reshc	old : E	ixample
0.25µm	СМОЗ	6			
VDD=2	.5V	1	L=0.25µn	1	W=0.375µm
NMOG	V _{T0} (V)		V _{DSAT} (V)	k'(A/V ²) 115.10 ⁻⁶	$\lambda(V^{-1})$ 0.06
NMOS PMOS	0.43	-0.4	0.63	-30.10*	
					$\frac{43 - 0.63/2)}{0.4 - 1.0/2)} = 3.5$
(W/L) _p =	= 3.5 >	(1.5 = 5	.25 for a	V _M of 1.25V
					Inverter

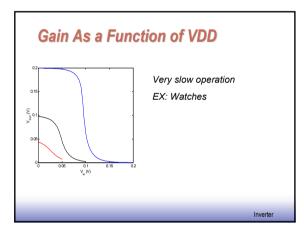


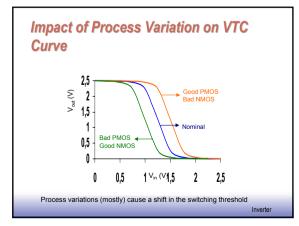


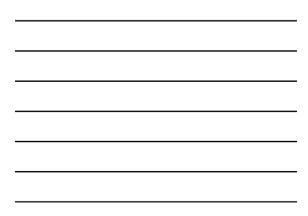


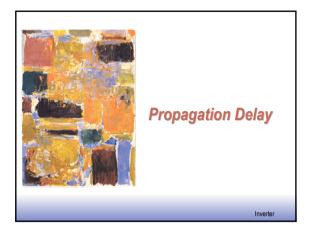
				k'(A/V ²)	
NMOS PMOS	0.43	-0.4	0.63		0.06
g = <u>1</u>	1.5×	115×10	$^{-6} \times 0.63 + 1.$	5×3.4×30>	$\frac{10^{-6} \times 1.0}{10^{-6} \times 1.0} = -27.5$
$g = \frac{1}{59 \times 10^{-10}}$	10 ⁻⁶		0.06+	0.1	=-27.5

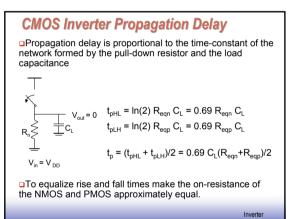


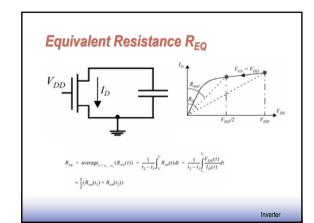


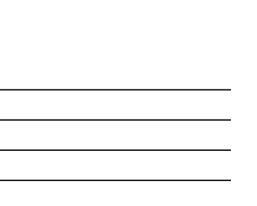


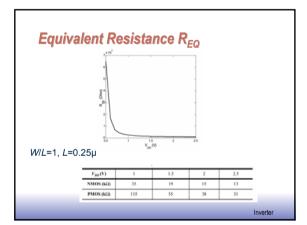


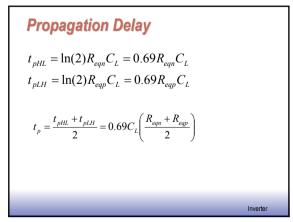


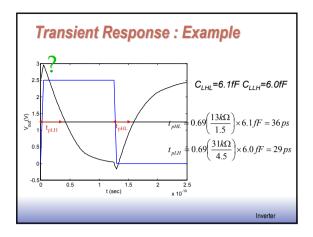






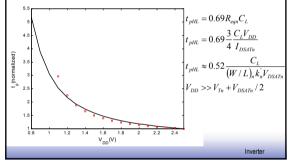






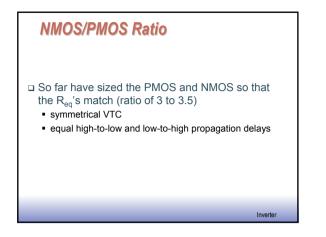
10

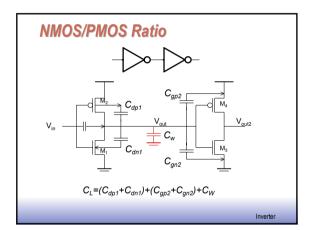
Equivalent Resistance R_{EQ} Solving the integral: $R_{eq} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT}(1+\lambda V)} dV = \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD}\right)$ with appropriately calculated Idsat $I_{DSAT} = k \frac{W}{L} \left((V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$ Averaging resistances: $R_{eq} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DS4T}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DS4T}(1 + \lambda V_{DD}/2)} \right) = \frac{3}{4} \frac{V_{DD}}{I_{DS4T}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$ Inverter



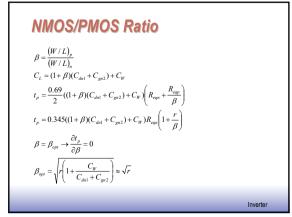
Delay As a Function of V_{DD}

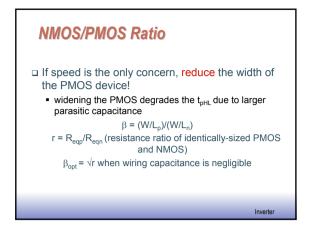
 $\square To see how a designer can optimize the delay of a gate have to expand the <math display="inline">R_{eq}$ in the delay equation

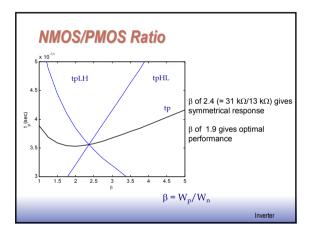

Design for Performance

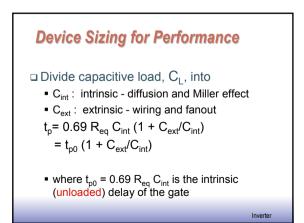

Reduce C₁

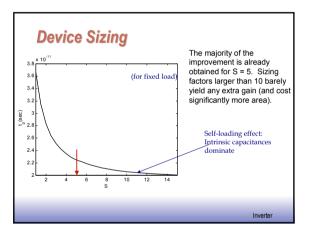
- internal diffusion capacitance of the gate itself
- keep the drain diffusion as small as possible
- interconnect capacitance
- fanout
- Increase W/L ratio of the transistor
 - the most powerful and effective performance optimization tool in the hands of the designer
 - watch out for self-loading! when the intrinsic capacitance dominates the extrinsic load
- □ Increase V_{DD}
 - can trade-off energy for performance
 - increasing $V_{\mbox{\scriptsize DD}}$ above a certain level yields only very minimal improvements


Inverter


- reliability concerns enforce a firm upper bound on V_{DD}

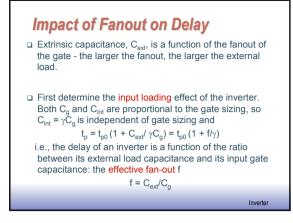


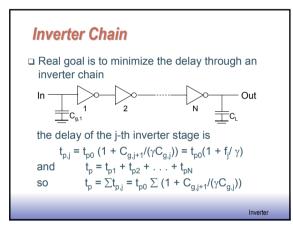


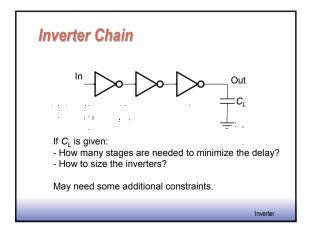


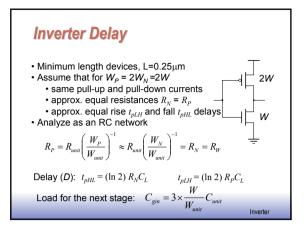
Device Sizing for Performance

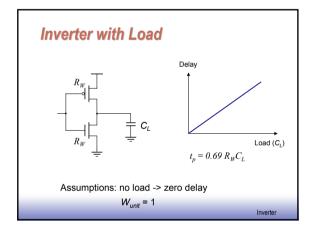

□ Widening both PMOS and NMOS by a factor S reduces R_{eq} by an identical factor ($R_{eq} = R_{ref}/S$), but raises the intrinsic capacitance by the same factor ($C_{int} = SC_{iref}$)

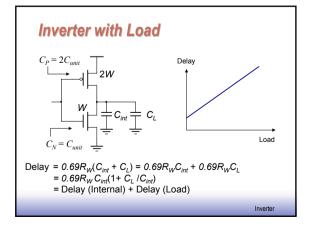

$$t_p = 0.69 R_{ref} C_{iref} (1 + C_{ext}/(SC_{iref}))$$

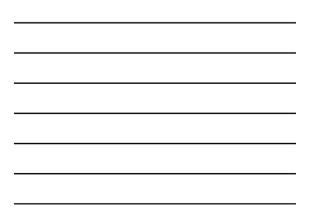

- $= t_{p0}(1 + C_{ext}/(SC_{iref}))$ • t_{p0} is independent of the sizing of the gate; with no load the drive of the gate is totally offset by the increased capacitance
- any S sufficiently larger than $(C_{\text{ext}}/C_{\text{int}})$ yields the best performance gains with least area impact

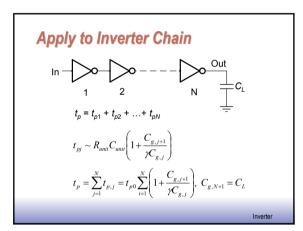












Delay Formula Delay ~ $R_W (C_{int} + C_L)$ $t_p = 0.69 R_W C_{int} (1 + C_L / C_{int}) = t_{p0} (1 + f / \gamma)$ $\begin{array}{l} C_{int} = \gamma C_g \mbox{ with } \gamma \approx 1 \\ f = C_t / C_g \mbox{-} \mbox{effective fanout} \\ R = R_{unit} / W \ ; \ C_{int} = W C_{unit} \\ t_{p0} = 0.69 R_{unit} C_{unit} \end{array}$ Inverter

Optimal Tapering for Given N Delay equation has N - 1 unknowns, $C_{g,2} - C_{g,N}$

Minimize the delay, find *N* - 1 partial derivatives $\partial t_p / \partial C_{g,j} = 0$

Result: $C_{g,j+1}/C_{g,j} = C_{g,j}/C_{g,j-1}$

Size of each stage is the geometric mean of two neighbors

$$C_{g,j} = \sqrt{C_{g,j-1}C_{g,j+1}}$$

- each stage has the same effective fanout (C_{out}/C_{in})

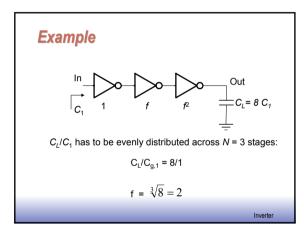
each stage has the same delay

Optimum Delay & Number of Stages

When each stage is sized by *f* and has same eff. fanout *f*.

$$f^N = F = C_L / C_{gin,1}$$

Effective fanout of each stage:


 $f = \sqrt[N]{F}$

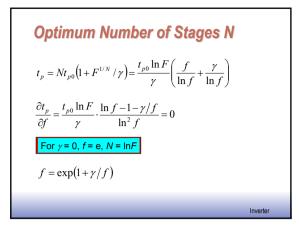
$$t_p = Nt_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

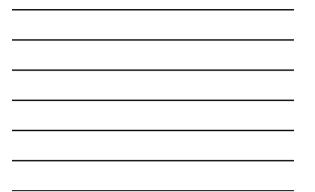
The relationship between $t_{\rm p}$ and F is linear for one inverter, square root for two, etc.

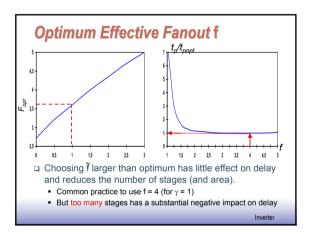
١

Inverter

Optimum Number of Stages N

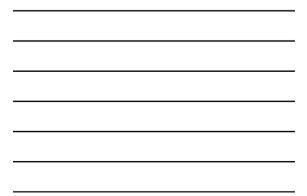

What is the optimal value for N given

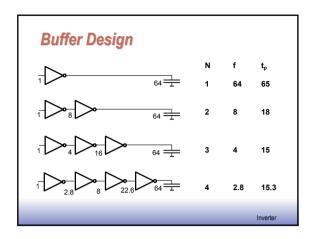

$$f^{N} = F = C_{L} / C_{gin,1} \qquad t_{p} = Nt_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

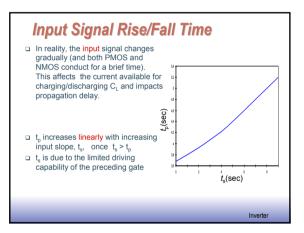

- if the number of stages is too large, the intrinsic delay of the stages becomes dominate
- if the number of stages is too small, the effective fanout of each stage becomes dominate

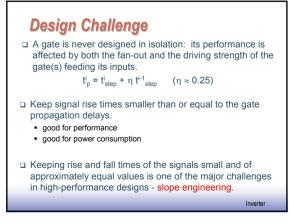
For a given load, C_{L} and given input capacitance C_{in} Find optimal sizing f

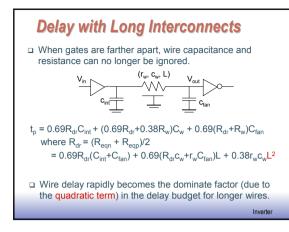
$$C_L = F \cdot C_{in} = f^N C_{in}$$
 with $N = \frac{\ln F}{\ln f}$








F	(γ = 1)	Unbuffered	Two Stage Chain	Opt. Inverter Chain
	10	11	8.3	8.3
	100	101	22	16.5
	1,000	1001	65	24.8
1	0,000	10,001	202	33.1



21

