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Introduction

o Why is designing digital
ICs different today than
it was before?

a Will it change in future?
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The First Computer

The Babbage
Difference Engine
(1832)

25,000 parts

cost: £17,470
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ENIAC - The First Electronic Computer (1946)
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La Révolution du Transistor

Premier transistor
Bell Labs, 1948
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The First Integrated Circuits

Logique Bipolaire des
Années 60

ECL Porte 3-entrées
Motorola 1966
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Intel 4004 Micro-processor

1971
2300 transistors
1 MHz operation
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Intel Pentium (IV) Microprocessor
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Transistor Revolution

0 Transistor —Bardeen (Bell labs) in 1947

Q Bipolar transistor — Schockley in 1949

o First bipolar digital logic gate — Harris in 1956

a First monolithic IC — Jack Kilby in 1959

o First commercial IC logic gates — Fairchild 1960
a TTL — 1962 into the 1990’s

0 ECL — 1974 into the 1980’s
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MOSFET Technology

0 MOSFET transistor - Lilienfeld (Canada) in 1925 and Heil
(England) in 1935

o CMOS - 1960’s, but plagued with manufacturing
problems

0 PMOS in 1960’s (calculators)

NMOS in 1970’s (4004, 8080) — for speed

a CMOS in 1980’s — preferred MOSFET technology
because of power benefits

0 BiCMOS, Gallium-Arsenide, Silicon-Germanium
a SOlI, Copper-Low K, ...

(]
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Moore’s Law

a In 1965, Gordon Moore predicted that the number
of transistors that can be integrated on a die would
double every 18 to 14 months (i.e., grow
exponentially with time).

a Amazingly visionary — million transistor/chip barrier
was crossed in the 1980’s.

= 2300 transistors, 1 MHz clock (Intel 4004) - 1971
= 16 Million transistors (Ultra Sparc Il1)

= 42 Million, 2 GHz clock (Intel P4) - 2001

= 140 Million transistor (HP PA-8500)
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Moore’s Law

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION
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Electronics, April 19, 1965.
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Transistor Counts
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Moore’s Law in Microprocessors
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Transistors on Lead Microprocessors double every 2 years
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Evolution in DRAM Chip Capacity
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Die Size Growth
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Die size grows by 14% to satisfy Moore’s Law
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Frequency
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Lead Microprocessors frequency doubles every 2 years
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Power Dissipation
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Lead Microprocessors power continues to increase
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Power Will Be a Major Problem
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Power delivery and dissipation will be prohibitive
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Power Density
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Not Only Microprocessors
—y
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Major Design Challenges

Qa Microscopic issues 0 Macroscopic issues
= ultra-high speeds = time-to-market
= power dissipation and supply rai = design complexity (millions of
drop gates)
= growing importance of high levels of abstractions

interconnect

noise, crosstalk

reliability, manufacturability
clock distribution

design for test

reuse and IP, portability
systems on a chip (SoC)
tool interoperability

Year Tech. Complexity Frequency 3 Yr. Design Staff Costs
Staff Size
1997 0.35 13MTr. 400 MHz 210 $90 M
1998 0.25 20MTr. 500 MHz 270 $120 M
1999 0.18 32MTr. 600 MHz 360 $160 M
2002 0.13 130 M Tr. 800 MHz 800 $360 M
Introduction

Why Scaling?

0 Technology shrinks by 0.7/generation

o With every generation can integrate 2x more
functions per chip; Chip cost does not increase
significantly

0 Cost of a function decreases by 2x

o But ...
= How to design chips with more and more functions?

= Design engineering population does not double every two
years...

0 Hence, a need for more efficient design methods
= Exploit different levels of abstraction
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Fundamental Design Metrics

a Functionality
a Cost
= NRE (fixed) costs - design effort
= RE (variable) costs - cost of parts, assembly, test
0 Reliability, robustness
= Noise margins
= Noise immunity
a Performance
= Speed (delay)
= Power consumption; energy
o Time-to-market
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Cost of Integrated Circuits

o NRE (non-recurring engineering) costs
= Fixed cost to produce the design
— design effort
— design verification effort
— mask generation
= Influenced by the design complexity and designer productivity
= More pronounced for small volume products
0 Recurring costs — proportional to product volume
= silicon processing
— also proportional to chip area
= assembly (packaging)

= test
cost per IC = variable cost per IC + _fixed cost
volume
25
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Innovation Exploding NRE / Mask Costs
[
“The club of people who can
afford an extreme sub-micron
ASIC or COTS design is getting oL
pretty exclusive.”
Jey
Ron Wilson, EE Times (May 2000) =
2 B
-_/ 1 E
025 0z oL o1 s
Process Geometry (Micron)
Tonm ASICs will have S4M
NRE
[ ——rp——— SRR, MR Tuax
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Die Cost

Single die

——Wafer

AMD
B CGoing up to 12”7 (30cm)

From http://www.amd.com
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Cost Per Transistor

cost:
¢-per-transistor

Fabrication capital cost per transistor (Moore’s law)
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Recurring Costs
cost of die + cost of die test + cost of packaging
final test yield
cost of wafer

variable cost =

costofdie = -gssparwater % dis yield
) _ n x (wafer diameter/2)2 n x wafer diameter
dies per wafer = die area T TNZ27%diearea
) ]

(el 1Y feepE)
\.. /\. /

~—
die yield = (1 + (defects per unit area x die area)/a.)
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Defects
T — T
° o o L

(T (e

)
\. / \l, ]
~—1
. . —0l
dic yield= (1 4 defects per unit area x die areaj
o

o is approximately 3

die cost = f(die area)4
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Yield Example

o Example

e wafer size of 12 inches, die size of 2.5 cm?, 1 defects/cm?, o =3
(measure of manufacturing process complexity)

o 252 dies/wafer (remember, wafers round & dies square)
o die yield of 16%
® 252 x 16% = only 40 dies/wafer die yield !

0 Die cost is strong function of die area
e proportional to the third or fourth power of the die area
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Some Examples (1994)
Chip Metal | Line | Wafer | Def./ | Area | Dies/ | Yield Die
layers | width | cost cm? | mm? | wafer cost
386DX 2 0.90 | $900 1.0 43 360 | 71% $4
486 DX2 3 0.80 | $1200 | 1.0 81 181 | 54% | $12
Power PC 4 0.80 | $1700 | 1.3 | 121 115 | 28% | $53
601
HP PA 7100 3 0.80 | $1300 | 1.0 | 196 | 66 | 27% | $73
DEC Alpha 3 0.70 | $1500 1.2 234 53 19% | $149
Super Sparc 3 0.70 | $1700 | 1.6 | 256 48 13% | $272
Pentium 3 0.80 | $1500 | 1.5 | 296 40 9% | $417
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Reliability

Noise in Digital Integrated Circuits

o Noise — unwanted variations of voltages and currents at the
logic nodes

o from two wires placed side by side

= capacitive coupling Vo
. I
— voltage change on one wire can
influence signal on the neighboring wire > 0
— cross talk

= inductive coupling o

— current change on one wire can > o
influence signal on the neighboring wire
Voo
o from noise on the power and ground supply rails
= can influence signal levels in the gate
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Example of Capacitive Coupling

0 Signal wire glitches as large as 80% of the supply voltage will
be common due to crosstalk between neighboring wires as
feature sizes continue to scale

Crosstalk vs. Technology

*Pulsed Signal - -

] 0.12m CMOS
\ 0:16m CMOS

| K

0.23m GMO$
T L0-35mGMOS

s

Black line quiet _

Redlines pulsed ~ ________

Glitches strength vs technology

From Dunlop, Lucent, 2000
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Static Gate Behavior

0 Steady-state parameters of a gate — static behavior — tell how
robust a circuit is with respect to both variations in the
manufacturing process and to noise disturbances.

0 Digital circuits perform operations on Boolean variables

x €{0,1}

o A logical variable is associated with a nominal voltage level

for each logic state
1< Voyand 0 < Vg,

Vou=" (Vo)

Vi Vi
a Difference between Vo, and V, is the logic or signal swing
V.

sw
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DC Operation
Voltage Transfer Characteristics (VTC)

0 Plot of output voltage as a function of the input voltage

V) Vi) —| >0—vy)

f
Vou=f (Vi)
T VY)EV(X)
A y Switching Threshold
M
Vor=f (Vi) L 2
Vie Vi V(x)
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Mapping Between Analog and Digital Signals

“qr v out
OH v Slope = -1

VIH

Undefined
Region

ViL

‘0 VOL

Vie Vin Vin

37
Introduction

Noise Margins

0 For robust circuits, want the “0” and “1” intervals to be a s large as possible

VDD
Von
NMy, = Vg = Viy
Noise Margin High
Noise Margin Low Vie
NM, =V = Vg
VOL
wgn
Gnd Gnd
Gate Output - Gate Input

>0 p—

0 Large noise margins are desirable, but not sufficient ...
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The Regenerative Property

0 A gate with regenerative property ensure that a disturbed signal converges
back to a nominal voltage level

5 Y2
w
= 34
SO NI
> 1]

-1 T T T T T T T T T

0 2 4 6 8 10
t (nsec)
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Conditions for Regeneration

vy =f(vg) = vy =finv(v,)

% f(v)

finv(v)

v, v,

2 o
Regenerative Gate Nonregenerative Gate
0 To be regenerative, the VTC must have a transient region with a gain
greater than 1 (in absolute value) bordered by two valid zones where the
gain is smaller than 1. Such a gate has two stable operating points.
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Noise Immunity

o Noise margin expresses the ability of a circuit to overpower a
noise source
= noise sources: supply noise, cross talk, interference, offset

0 Absolute noise margin values are deceptive

= a floating node is more easily disturbed than a node driven by a low
impedance (in terms of voltage)

0 Noise immunity expresses the ability of the system to process
and transmit information correctly in the presence of noise

0 For good noise immunity, the signal swing (i.e., the difference
between Vg, and Vg, ) and the noise margin have to be large
enough to overpower the impact of fixed sources of noise

a1
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Directivity

o A gate must be undirectional: changes in an output level
should not appear at any unchanging input of the same circuit

= In real circuits full directivity is an illusion (e.g., due to capacitive
coupling between inputs and outputs)

o Key metrics: output impedance of the driver and input
impedance of the receiver
= ideally, the output impedance of the driver should be zero
= input impedance of the receiver should be infinity
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Fan-In and Fan-Out

0 Fan-out — number of load gates connected
to the output of the driving gate

@ gates with large fan-out are slower

N
0 Fan-in — the number of inputs to the gate
@ gates with large fan-in are bigger and
slower M
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The Ideal Inverter
a The ideal gate should have
= infinite gain in the transition region
= a gate threshold located in the middle of the logic swing
= high and low noise margins equal to half the swing
= input and output impedances of infinity and zero, resp.
Voul
R=o
R,=0
Fanout = o
g=-»
NM,, = NM_ = VDD/2
Vin 44
Introduction
An Old-time Inverter
Vo, =0.45V ‘ ! ]
= - NM ]
Vou=3.5V 4.0 L
V,=0.66V 1
3.0 — —
V,,=2.35V | i
Vy=1.64V 2.0 —
L Vi J
Ny= NM
1.0 e — 1
Nw= L |
L | L | L | | L
0.0 1.0 2.0 3.0 4.0 5.0
Vin (V)
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Delay Definitions

v, - >0 v,
Vin
-~
\ Propagation delay
input 9 =
:;g\l/‘eform 50% K tp - (tpHL + tpLH)/ 2
t
tpHL tpLH
Vaut |[—
7‘90%
output .
waveform 50% 7‘ signal slopes
\— 9% ’t/
t t<
-« —>
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Modeling Propagation Delay
0 Model circuit as first-order RC network
Vou(t) = (1-e)V
R where t = RC
Vout
(o}
v I Time to reach 50% point is
n t=In(2)t =0.69 t
Time to reach 90% point is
t=In(9)t =221
a Matches the delay of an inverter gate
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Ring Oscillator : Delay Measurement
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A First-order RC Network

R

A A Vout

j i (O, (O)dt = Vjc ”‘”dt*C dev =C, V>

E,, =j i, (t)vm(t)dt—f c, Lo Ly, di = j VoV,
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Power and Energy Dissipation

a Power consumption: how much energy is consumed per
operation and how much heat the circuit dissipates

= supply line sizing (determined by peak power)
peak = Vadipeak
= battery lifetime (determined by average power dissipation)
p(t) = V(Bi(t) = Vqi(t) Pavg™ 1T T p(t) dt = Vyy/T Jigy(t) dt
= packaging and cooling requirements

o Two important components: static and dynamic

; - 2
E (joules) = C| V4?Po 1 * tsg Vg lpeak Pos1 + Vg lieakage

l fort = Posst ™ Totoek

P (watts) = C, Vy¢? fo 1 + tcVag lpeak fos1* Vag lieakage
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Power and Energy Dissipation

0 Propagation delay and the power consumption of a gate are
related
0 Propagation delay is (mostly) determined by the speed at
which a given amount of energy can be stored on the gate
capacitors
= the faster the energy transfer (higher power dissipation) the faster the
gate
a For a given technology and gate topology, the product of the
power consumption and the propagation delay is a constant
= Power-delay product (PDP) — energy consumed by the gate per
switching event
0 An ideal gate is one that is fast and consumes little energy, so
the ultimate quality metric is
= Energy-delay product (EDP) = power-delay 2
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Summary

a Digital integrated circuits have come a long
way and still have quite some potential left
for the coming decades

a Understanding the design metrics that
govern digital design is crucial

= Cost, reliability, speed, power and energy
dissipation
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