

Digital Integrated Circuits A Design Perspective

Prentice Hall Electronics and VLSI Series ISBN 0-13-120764-4

Introduction

[Adapted from Rabaey's *Digital Integrated Circuits*, Second Edition, ©2003 Rabaey, A. Chandrakasan, B. Nikolic] Copyright 2003 J. Rabaey et al.

1 Introduction

J.

Introduction

 Why is designing digital ICs different today than it was before?
 Will it change in future?

2 Introduction

The First Computer

The Babbage Difference Engine (1832) 25,000 parts cost: £17,470

Logique Bipolaire des

ECL Porte 3-entrées Motorola 1966

Transistor Revolution

- □ Transistor –Bardeen (Bell labs) in 1947
- Bipolar transistor Schockley in 1949
- □ First bipolar digital logic gate Harris in 1956
- First monolithic IC Jack Kilby in 1959
- □ First commercial IC logic gates Fairchild 1960
- □ TTL 1962 into the 1990's
- □ ECL 1974 into the 1980's

- L BICINOS, Gallium-Arsenide, Silicon-Gem
- □ SOI, Copper-Low K, ...

Introduction

140 Million transistor (HP PA-8500)

Why Scaling?

- □ Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; Chip cost does not increase significantly
- □ Cost of a function decreases by 2x
- □ But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- □ Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Introduction

Fundamental Design Metrics

- Functionality
- Cost
 - NRE (fixed) costs design effort
 - RE (variable) costs cost of parts, assembly, test
- □ Reliability, robustness
 - Noise margins
 - Noise immunity
- Performance
 - Speed (delay)
 - Power consumption; energy
- Time-to-market

Yield Example

Example

- wafer size of 12 inches, die size of 2.5 cm², 1 defects/cm², α = 3 (measure of manufacturing process complexity)
- 252 dies/wafer (remember, wafers round & dies square)
- die yield of 16%
- 252 x 16% = only 40 dies/wafer die yield !

Die cost is strong function of die area

• proportional to the third or fourth power of the die area

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm ²	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Example of Capacitive Coupling

Signal wire glitches as large as 80% of the supply voltage will be common due to crosstalk between neighboring wires as feature sizes continue to scale

Static Gate Behavior Steady-state parameters of a gate - static behavior - tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances. Digital circuits perform operations on Boolean variables x ∈ {0,1} A logical variable is associated with a nominal voltage level for each logic state 1 ⇔ V_{OH} and 0 ⇔ V_{OL} V(x) - V(y) V_{ou}=¹(V_{ou}) Difference between V_{OH} and V_{OL} is the logic or signal swing V_{sw}

40 Introduction

Noise Immunity

- Noise margin expresses the ability of a circuit to overpower a noise source
- noise sources: supply noise, cross talk, interference, offset
- □ Absolute noise margin values are deceptive
- a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise
- For good noise immunity, the signal swing (i.e., the difference between V_{OH} and V_{OL}) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

41 Introduction

Directivity

- □ A gate must be *undirectional*: changes in an output level should not appear at any unchanging input of the same circuit
 - In real circuits *full* directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs)
- Key metrics: output impedance of the driver and input impedance of the receiver
 - ideally, the output impedance of the driver should be zero
 - · input impedance of the receiver should be infinity

Power and Energy Dissipation

- Propagation delay and the power consumption of a gate are related
- Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors
 - the faster the energy transfer (higher power dissipation) the faster the gate
- □ For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant
 - Power-delay product (PDP) energy consumed by the gate per switching event
- An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is
 - Energy-delay product (EDP) = power-delay²

Summary

- Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
- Understanding the design metrics that govern digital design is crucial
 - Cost, reliability, speed, power and energy dissipation