

Mail : aziz.doukkali@nxp.com

Introduction à la conception de circuits intégrés analogiques

"Analog circuit designers tend to think of themselves as lone cowboys, brave pioneers, creative and independent types, in contrast top the herd animals of the digital IC world"

Chris Mangelsdorf, "The Analog Top Ten", ISSCC Digest of Technical Papers, 1996

Généralités sur la conception de Circuits Intégrés

Les niveaux d'abstraction du design

Principes de base du design

La conception de circuits intégrés est fondée principalement sur la notion de choix.

- Le concepteur doit savoir choisir :
- Le procédé technologique approprié dans lequel sera réalisé le circuit.
- L'outil CAO et la bibliothèque des modèles de composants permettant la simulation.
- La méthodologie de conception.
- La méthodologie de test.

Le choix requière une certaine connaissance en :

- Technologie du silicium et plus particulièrement la connaissance des différents procédés disponibles.
- Conception de circuits.
- Topologie qui recouvre la technique de génération des plans de masque.
- test

Principes de base (Suite)

Principes de base (Suite)

De façon générale le choix s'appuie sur quelques principes fondamentaux tels que :

- Nécessité de raisonner plutôt en fonction de l'encombrement qu'en fonction de la nature du composant. Une résistance de $10k\Omega$ coûte aussi cher qu'un transistor petit signal puisque les surfaces respectives sont du même ordre de grandeur.

- Nécessité d'éliminer autant que possible les liaisons capacitives, en utilisant des couplages continus entre étages. Ces couplages continus sont réalisés par des étages différentiels ou par des circuits de transposition.

- Nécessité d'exploiter au mieux les lois dont la reproductibilité est assurée comme par exemple $v_{BE}(Ic,T^{\circ})$ en régime de faible injection de courant.

- Nécessité de concevoir des circuits tels que leurs performances dépendent plutôt de la valeur relative des résistances plutôt que de leurs valeurs absolues.

- Nécessité de limiter le nombre de connexions de sortie de manière à pouvoir utiliser les techniques de mise en boîtier usuelles.

L'objectif est de satisfaire aux critères permettant d'atteindre le meilleur compromis Prix-Complexité.

Ces critères sont généralement repérables par des paramètres économiques tels que time to market et time to product.

Méthode de conception

L'apprentissage de la conception de circuits intégrés se déroule en deux phases :

- Dans un premier temps, acquérir un ensemble d'informations théoriques par l'analyse de circuits élémentaires.

- Ensuite, dans un second temps, pratiquer la synthèse de circuits élémentaires à l'aide de l'outil CAO.

La synthèse de circuit repose sur un principe simple :

Ebauche puis Finition

L'ébauche : Consiste à faire un calcul approximatif à partir des modèles simples de composants, afin de vérifier que les choix (valeurs de résistances, de capacités, de courants, de dimensions de transistors...) posés répondent aux spécifications du cahier des charges.

La finition : A l'aide de l'outil CAO, consiste à saisir le schéma à partir des calculs faits à la main et de le simuler pour valider sa fonctionnalité.

A. Doukkali

Notes de cours –Edition 2006-2007

Le transistor MOS

La modélisation du transistor MOS qui vous est proposée, s'appuie sur le modèle EKV (Enz-Krummenacher-Vittoz). C'est un modèle de troisième génération et de notre point de vue c'est le modèle par excellence qui allie simplicité et précision pour l'ébauche de circuits intégrés analogiques, basse consommation.

NSICAE

Structure du transistor MOS

Constant	Constant Description	Value	Units
Symbol			
V_G	Silicon bandgap (27°C)	1.205	V
k	Boltzmann's constant	1.381x10-23	J/K
n_i	Intrinsic carrier concentration (27°C)	1.45x1010	cm-3
£()	Permittivity of free space	8.854x10-14	F/cm
ε_{Si}	Permittivity of silicon	11.7 ε ₀	F/cm
COX	Permittivity of SiO ₂	3.9 ε ₀	F/cm

A. Doukkali

Représentation symbolique du transistor MOS

Pour faciliter l'utilisation du transistor MOS, il est recommandé de ne tenir compte que des valeurs absolues des tensions et de choisir les courants dans le même sens que la flèche pour que les équations restent identiques pour les deux types de transistors.

A. Doukkali

Notes de cours -Edition 2006-2007

Les différents modes de fonctionnement du transistor MOS

Régime de bande plate

Cette condition est obtenue lorsque le potentiel d'interface dans le canal, V_i, est nul.

Répartition des charges dans le canal.

Répartition du potentiel d'interface.

 $V_G = 0$

Z♥_{Vi} (o) =0

 $V_{D} = 0$

Ňŧ

n(E)

V_i (L') =0

X

▲Ε

BV

E_F

Régime de forte inversion

- Lorsque le potentiel de grille V_G commence à augmenter : Le champ crée va, dans un premier temps, dépléter la zone d'interface sous la grille.
- Puis, lorsque le potentiel d'interface Vi relatif à ce champ atteint la valeur de la tension de seuil d'une diode, les jonctions Source/Substrat et Drain/Substrat deviennent passantes : Flles conduisent et forment le canal

On appelle canal la zone sous la grille à l'interface Si/SiO₂, limitée de part et d'autre par le Drain et la Source.

Répartition des charges dans le canal.

Mode linéaire

Lorsque les deux jonctions Source/Substrat et Drain/Substrat sont passantes, des électrons provenant de la Source et du Drain vont être injectés dans le canal. Une différence de potentiel entre Source et Drain va faire varier le potentiel d'interface dans le canal est générer un courant de conduction entre ces deux électrodes.

Répartition des charges dans le canal.

Mode saturé

Pour un potentiel d'interface tel que le canal existe, lorsqu'on continue d'augmenter le potentiel d'une des électrodes (Drain ou Source) tel que la jonction correspondante se bloque. Alors les charges -ici les électrons- ne sont plus injectés que par la jonction passante. Depuis la jonction bloquée le transistor se comporte comme une source de courant contrôlée par la jonction passante.

La tension correspondant au blocage de la jonction est appelée tension de pincement car le blocage de la jonction correspond au pincement du canal.

Répartition du potentiel d'interface.

Modélisation du transistor MOS

Hypothèses simplificatrices

Critères de modélisation : Un modèle doit être simple et précis

1ère hypothèse

Le dopage du substrat dans la zone du canal est supposé uniforme, noté $N_B(cm^{-3})$.

2^{ème} hypothèse

Pour éviter de tenir compte des effets secondaires prépondérants pour les MOS à canal court. La géométrie du MOS, c'est-à-dire la largeur W et la longueur L du canal, est choisie assez grande, c'est-à-dire au moins supérieure à 1um.

3^{ème} hypothèse

Le courant des porteurs minoritaires est négligé. On ne tient compte que des porteurs majoritaires.

4^{ème} hypothèse

L'équation de continuité s'écrit :

$$\frac{\partial n(x,y,z)}{\partial t} = \frac{1}{q} \nabla J_n + G_n - R_n$$

Dans le cas du MOS à canal N, on considère que :

- La génération et la recombinaison des porteurs libres dans le canal est négligée.

$$G_n - R_n = 0$$

De même, on se place en régime statique ou quasi-statique. Ainsi,

$$\frac{\partial n(x,y,z)}{\partial t} = 0$$

L'équation de continuité devient : $\nabla J_n = 0$

Remarque

La densité de courant dans le canal est un courant d'électrons dont le divergent est nul, c'est-à-dire que le courant total dans le canal est constant en n'importe quel point du canal.

5^{ème} hypothèse

Le champ électrique transverse E_z est considéré beaucoup plus intense que les champs électriques longitudinal E_x et latéral E_y tel qu'en un point M(x, y, z) du canal, le potentiel électrostatique $\Psi(x, y, z)$ est défini par la loi de Poisson :

 $\Delta \psi(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\rho(\mathbf{x},\mathbf{y},\mathbf{z})}{\varepsilon_0 \varepsilon_{sc}}$ Comme $\frac{\partial^2 \Psi}{\partial \mathbf{z}^2} \gg \frac{\partial^2 \Psi}{\partial \mathbf{x}^2}, \frac{\partial^2 \Psi}{\partial \mathbf{y}^2}$

Alors l'équation de Poisson se simplifie en une équation à une dimension :

$$\frac{\partial^2 \psi(\mathbf{x},\mathbf{y},\mathbf{z})}{\partial \mathbf{z}^2} = \frac{\rho(\mathbf{x},\mathbf{y},\mathbf{z})}{\varepsilon_0 \varepsilon_{sc}}$$

Remarque

Cette hypothèse qui considère que $E_x \ll E_z$ n'est pas vrai au voisinage du drain car du fait que V_{DB} > 0, E_x n'est plus négligeable devant E_z .

Cette hypothèse est maintenue car elle permet de conserver un modèle à une dimension et satisfaire à l'exigence de simplicité.

6^{ème} hypothèse

Le courant dans le canal circule seulement dans la direction des x donc

$$\frac{\partial \Psi}{\partial z} = 0 \qquad \text{et} \qquad \frac{\partial \Psi}{\partial y} = 0$$

Ce qui se traduit par, $\Psi(x, y, z)$ reste constant dans les directions y et z.

7^{ème} hypothèse (Van de Wiele –79)

Pour conserver la simplicité du modèle, on considère que la charge dans le canal n'est pas répartie en profondeur mais concentrée à la surface : cette approximation définit le modèle à 'couche de charge' ou 'feuille de charge' ou encore 'charge sheet'.

- Toute la charge Q_i est au potentiel de surface tel que Ψ = Ψ_s .

Analyse quantitative du MOS

Définitions de base			
Paramètres	Définition	unités	E IN S fore nationale su 8 cen
N _B = const.	Dopage du substrat	m -3	
n _i	Concentration intrinsèque de porteurs	m ⁻³	
$U_T = kT/q$	Tension thermodynamique	V	
φ _{ms}	Différence de pot. d'extraction grille-substrat	V	
φ _F = U _T In(N _B /n _i)	Potentiel de Fermi du substrat	V	
ν _i +φ _F	Quasi-potentiel de Fermi ϕ_{Fn} local des électrons	V	
ψ (ψ _s)	Potentiel électrostatique (en surface) ($\psi(z=\infty) = 0$ loin de la surface)	V	

La tension V_i, appelée potentiel local du canal, mesure le déséquilibre des électrons en un point du canal, dû à la ddp entre les potentiels V_S et V_D.

• $V_i = V_s$ à la source et $V_i = V_D$ au drain

Notations

Les notations adoptées sont données sur un exemple. Elles peuvent être appliquées à tous les courants et toutes les tensions :

Le courant drain sera noté de la façon suivante : $I_d = i_d + I_D$

A. Doukkali

Avec

I_d : Courant total

- id : Courant petits signaux ou AC
- I_D: Courant statique, continu ou DC

Calcul des charges dans le canal

+

Ζ

BC

E,

BV

 $qV_i = E_{Fp} - E_{Fn}$

 $q\phi_{\text{F}} = E_{\text{i}}(\infty) - E_{\text{Fp}}$

 $\psi(z) = \mathsf{E}_{\mathsf{i}}(\infty) - \mathsf{E}_{\mathsf{i}}(z)$

A partir des hypothèses simplificatrices, l'équation de Poisson s 'écrit :

$$\frac{d^2\psi(z)}{dz^2} = \frac{q}{\epsilon_s} (n_p(z) - p_p(z) + N_B)$$

- Pour un NMOS, les trous dans le canal restent à l'équilibre. Leur densité s'écrit :

$$p_p(z) = p_{p_0} = n_i \exp\left(\frac{\phi_F - \psi(z)}{U_T}\right)$$

- Les électrons sont hors équilibre avec :

$$\phi_{Fn} = \phi_F + V_i$$

- Leur densité s'écrit :

$$n_p(z) = n_i exp \left(\frac{\psi(z) - \phi_F - V_i}{U_T} \right)$$

Comme le volume est une zone neutre, alors : $\psi(z)|_{z\to\infty} = 0$ et $V_i|_{z\to\infty} = 0$

La densité des charges fixes s'écrit :
$$N_B = n_i \left(exp \left(\frac{\phi_F}{U_T} \right) - exp \left(\frac{-\phi_F}{U_T} \right) \right)$$

0

Interface S_i/S_iO_2

Si

 E_{fn}

 S_iO_2

φ_F

ψ(z) 👖

Le champ électrique vertical à l'interface Si/SiO₂ noté E_s avec $E_s = E_z(\psi = \psi_s)$

L'expression de ce champ électrique s'écrit :

$$\mathsf{E}_{\mathsf{s}} = \mathsf{sgn}(\Psi) \; \frac{\mathsf{U}_{\mathsf{T}}}{\mathsf{L}_{\mathsf{D}}} \; \mathsf{F}(\Psi_{\mathsf{s}} \; ; \; 2\phi_{\mathsf{F}} + \mathsf{V}_{\mathsf{i}})$$

Avec :

$$F(\psi_{s}; 2\phi_{F} + V_{i}) = \left\{ exp\left(\frac{-2\phi_{F} - V_{i}}{U_{T}}\right) \left[exp\left(\frac{\psi_{s}}{U_{T}}\right) - 1 \right] + \left(exp\left(-\frac{\psi_{s}}{U_{T}}\right) - 1 \right) + \frac{\psi_{s}}{U_{T}} \right\}^{\frac{1}{2}} \right\}$$

Expression des charges surfaciques en fonction du potentiel de surface

A partir de la loi de Gauss, on obtient la charge surfacique totale Q_{sc} :

Tel que
$$Q_{sc} = -\varepsilon_s E_s$$

Soit $Q_{sc} = -\frac{\varepsilon_s U_T}{L_D} F(\psi_s ; 2\phi_F + V_i)$

Avec :

$$F(\psi_{s} ; 2\phi_{F} + V_{i}) = \left\{ exp\left(\frac{-2\phi_{F} - V_{i}}{U_{T}}\right) \left[exp\left(\frac{\psi_{s}}{U_{T}}\right) - 1 \right] + \left(exp\left(-\frac{\psi_{s}}{U_{T}}\right) - 1 \right) + \frac{\psi_{s}}{U_{T}} \right\}^{2} \right\}$$

1

tion a summal a conference president of

De façon approximative, si on néglige la contribution des trous, l'expression des charges

à la surface du silicium $Q_{\mbox{\scriptsize sc}}$ s'écrit :

$$Q_{sc} = -\frac{\psi_{s}}{|\psi_{s}|} \frac{\varepsilon_{s} U_{T}}{L_{D}} \left\{ exp\left(\frac{-2\phi_{F} - V_{i}}{U_{T}}\right) \left[exp\left(\frac{\psi_{s}}{U_{T}}\right) - 1 \right] + \frac{\psi_{s}}{U_{T}} \right\}^{2}$$

 Q_{sc} sont dues principalement aux charges mobiles Q_i -ici les électrons- et aux charges fixes Q_d .

- En régime de faible inversion, la charge à la surface du silicium est dominée par les charges fixes relatives à la déplétion dont l'expression s'écrit :

$$Q_{d} = sgn(\psi_{s}) \frac{\varepsilon_{s}U_{T}}{L_{D}} \left\{ \frac{\psi_{s}}{U_{T}} \right\}^{\frac{1}{2}}$$

- En régime de forte inversion, les charges mobiles sont la contribution dominante de la charge en surface. On constate qu'une très faible variation du potentiel de surface Ψ_S augmente fortement les charges mobiles Q_i. L'expression de ces charges s'écrit :

$$Q_{i} = \frac{\Psi_{s}}{|\Psi_{s}|} \frac{\varepsilon_{s}U_{T}}{L_{D}} \left\{ exp\left(\frac{\Psi_{s} - 2\phi_{F} - V_{i}}{U_{T}}\right) \right\}^{\frac{1}{2}}$$

Pratiquement, On considère que le potentiel de surface est quasi constant lorsque : $\psi_0 = 2\phi_F + \Delta\phi_F$

En forte inversion, le potentiel de surface Ψ_s s'écrit : $\Psi_s = (2\phi_F + \Delta\phi_F) + V_i = \Psi_o + V_i$

A. Doukkali

1

Relation entre le potentiel de surface et la tension de grille

La loi de Gauss, appliquée à l'interface Oxyde/Silicium, donne : $\varepsilon_{sc}E_{sc} = \varepsilon_{ox}E_{ox}$ Sachant que $Q_{sc} = -\varepsilon_{sc}E_{sc}$ en Cb/cm² et $Q_G = \varepsilon_{ox}E_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}V_{ox} = C_{ox}V_{ox}$ en Cb/cm²

A partir de ces relations et de celles donnant le bilan des charges et des tensions relatives à la zone active du canal, on en déduit la relation entre V_G et ψ_s .

 $\begin{cases} Q_G = -Q_{ss} - Q_{sc} \\ V_G = V_{ox} + \psi_s + \phi_{ms} \end{cases} \longrightarrow \qquad Q_G = C_{ox} (V_{GB} - \phi_{ms} - \psi_s) = -Q_{ss} - Q_{sc} \end{cases}$

En fonction des charges totales dans le silicium, la tension de grille s'écrit :

$$V_{GB} = \phi_{ms} + \psi_{s} - \frac{Q_{ss}}{C_{ox}} - \frac{Q_{sc}}{C_{ox}}$$
Avec V_{FB} appelée tension de bande plate : $V_{FB} = \phi_{ms} - \frac{Q_{ss}}{C_{ox}}$

On obtient la relation entre le potentiel de surface et la tension de grille

$$V_{GB} = V_{FB} + \psi_s - \frac{Q_{sc}}{C_{ox}}$$

Si on injecte l'expression de Q_{SC} dans la relation de la tension de grille, on obtient ainsi une relation entre le potentiel de surface ψ_S et la tension de grille normalisée :

Remarque

On constate qu'en forte inversion le potentiel de surface $\psi_{\textbf{S}}$ est bloqué à une valeur constante au delà de $\psi_{\textbf{O}}$ = 2 $\phi_{\textbf{F}}$ + $\Delta \varphi$.

 $\Delta \phi$ étant une valeur fluctuante à ajuster, valant quelques U_T, tel que $\Delta \phi$ = mU_T avec 4 < m < 6 On peut dire qu'en forte inversion, le potentiel de surface ψ_s est indépendant de la tension

de grille et vaut : $\Psi_S = \Psi_0 + V_i$

2006-10-19

ENSICAEN

a copierant practical

Fonctionnement en régime de forte inversion

Approximation par le modèle à feuille de charge (Charge sheet)

х

L'expression de la charge mobile en surface s'écrit : $-Q_i = q \int_0^{\infty} n_p dz = q \int_0^{\psi_s} \frac{n_p}{E_z} d\psi$

Connaissant les expressions de ${\rm n_p}$ et ${\rm E_z},$ on constate qu'il n'y a pas de solution analytique de cette intégrale

Cependant l'allure du rapport
$$\frac{n_p(z)}{E_z} \approx exp\left(m\frac{\psi(z)}{U_T}\right)$$
 Avec $1 \le m \le 2$;

Permet de constater que 95% des charges mobiles sont localisées au voisinage de la surface pour

$$\psi_{\rm S}$$
 - 3 à 6U_T < ψ < $\psi_{\rm S}$

Ce qui justifie l'approximation du modèle à couche de charge ou feuille de charge :

- Toute la charge Qi est au potentiel de surface $\psi\,$ = ψ_{S}
- La charge de déplétion ${\sf Q}_d$ est fonction de ψ_S tel que $\,:\,$

P. Doukkali

2006-10-19

NSICAEN

 x_s x_s - 3 La charge Qi dans le canal est localisée à la surface en z=0 et soumise au potentiel Ψ_5

Relation entre la charge mobile dans le canal Q_i et la tension de grille V_G en régime de forte inversion, dans le modèle à feuille de charge

On sait que, dans l'approximation du modèle à feuille de charge, l'expression de la charge spatiale fixe due à la déplétion, s'écrit :

$$-Q_{d} = \gamma C_{ox} \sqrt{\psi_{s}} \qquad \text{Avec} \qquad \gamma = \frac{\sqrt{2qN_{B}\varepsilon_{s}}}{C_{ox}} : \text{Facteur de modulation par le substrat}$$

L'expression de la charge mobile se déduit de la charge totale sachant que :

Définition de la tension de seuil

A l'équilibre électrostatique, c'est-à-dire sans effet de substrat (backgate effect). La tension de grille minimum correspondant à Q_i = 0 et V_i = 0 représente la tension de seuil.
 La tension de seuil est aussi définie comme la valeur de la tension de grille au-delà de laquelle se forme le canal

Son expression s'écrit : $V_{GB}(Q_i = 0, V_i = 0) = V_{TB}(V_i = 0) = V_{To} = V_{FB} + \psi_o + \gamma_v \sqrt{\psi_o}$

 Hors, équilibre électrostatique, c'est-à-dire lorsque V_i ≠ 0, la tension de seuil, V_{TB}, est définie par rapport au substrat comme la valeur de la tension de grille pour laquelle il n'y a pas de charges dans le canal, c'est-à-dire lorsque V_i ≠ 0 et Q_i = 0.

Ce qui s'écrit :
$$V_{GB}(Q_i = 0; V_i \neq 0) = V_{TB}(V_i) = V_{FB} + \psi_o + V_i + \gamma \sqrt{\psi_o + V_i}$$

Définition de la tension de pincement

Lorsque le potentiel local du canal V_i est tel que, pour une tension de grille donnée,

la condition $V_{GB} = V_{TB}(V_i)$, donnant $Q_i = 0$ soit réalisée. Ce potentiel local du canal est appelé tension de pincement V_P .

Ce qui s'écrit : $V_{GB}(Q_i = 0; V_i = V_P) = V_{TB}(V_i = V_P)$ Ou autrement :

$$V_{GB}(Q_{i} = 0; V_{i} = V_{P}) = V_{TB}(V_{P}) = V_{To} + V_{P} + \gamma (\sqrt{\psi_{o} + V_{P}} - \sqrt{\psi_{o}})$$

De cette expression, on en déduit la tension de pincement qui s'écrit :

$$V_{P} = V_{GB} - V_{To} + \gamma \left(\sqrt{V_{GB} - V_{To}} + \left(\frac{\gamma}{2} + \sqrt{\psi_{0}} \right)^{2} - \frac{\gamma}{2} - \sqrt{\psi_{0}} \right)$$
On about i finalement a une autre définition
de la tension de pincement :
$$V_{P} = V_{i} \left(V_{TB} = V_{GB} \right)$$
Remarque :
Ne pas faire la confusion entre Vp et V_{DS, sat}

$$V_{GB} = \frac{Q_{i}}{C_{OX}} + \frac{1}{V_{F}} = V_{GB}$$
Faible inversion
Forte Inversion
V_{TO} + V_i

$$V_{i}$$
Notes de cours -Edition 2006-2007
39

Définition du facteur de pente

Si l'on étudie la variation de la tension de seuil en fonction des charges mobiles, on constate que la pente de cette fonction varie lentement et donc peut être approximée par une constante notée **n** :

Cette constante est appelée facteur de pente. $\mathbf{n} = \frac{dV_{TB}}{d\psi_s} = \frac{1}{C_{ox}} \frac{dQ_i}{d\psi_s} \Big|_{\mathbf{V}_o} = 1 + \frac{\gamma}{2\sqrt{\psi_s}}$

Ce constat a permis de simplifier l'expression de la tension de seuil.

 $V_{TB}(V_i) = V_{To} + nV_i \qquad \text{Avec} :$ $\psi_S = \psi_0 + V_i \text{ et } \psi_0 = 2\phi_F + \Delta\phi$ $\psi_S = 0.2006-10-19 \qquad \text{(P. Doukkali Notes de cours - Edition 2006-2007} \qquad 40$

Autres définition du facteur de pente

Le facteur de pente, notée n, tel qu'il a été défini précédemment par :

$$n = \frac{dV_{TB}}{dV_{s}} = \frac{1}{C_{ox}} \frac{dQ_{i}}{dV_{s}} \Big|_{V_{G}} = 1 + \frac{\gamma}{2\sqrt{\psi_{s}}}$$
Peut s'écrire d'une autre manière :
Avec :
 $\Psi_{S} = \Psi_{0} + V_{i}$ Soit : $n = 1 + \frac{\gamma}{2\sqrt{\psi_{0} + V_{i}}}$
 et
 $\psi_{0} = 2\phi_{F} + \Delta\phi$
A partir de la relation de V_{G} en fonction de V_{P}
 $V_{GB} = V_{TB}(V_{P}) = V_{To} + V_{P} + \gamma(\sqrt{\psi_{0} + V_{P}} - \sqrt{\psi_{0}})$
On définit aussi la pente n en fonction de la tension de pincement
 $n = n(V_{P}) = \frac{dV_{TB}(V_{i})}{dV_{i}} \Big|_{V_{i}} = V_{P} = 1 + \frac{\gamma}{2\sqrt{\psi_{0} + V_{P}}}$
Cette relation permet les approximations suivantes :
 $V_{GB} = V_{To} + nV_{P}$
 e^{\dagger} $-\frac{Q_{i}}{C_{ox}} \approx n(V_{P} - V_{i})$
2006-10-19
 $Q_{0} = Q_{0} + Daukkah$
Notes de cours -Edition 2006-2007

A partir de la relation V $_{\rm P}$ en fonction de V $_{G}$

A partir de l'expression de la tension de pincement

$$V_{P} = V_{GB} - V_{To} - \gamma \left(\sqrt{V_{GB} - V_{To} + \left(\frac{\gamma}{2} + \sqrt{\psi_{o}} \right)^{2}} - \left(\frac{\gamma}{2} + \sqrt{\psi_{o}} \right) \right)$$

On donne l'expression de $n(V_G)$

$$\frac{dV_{P}}{dV_{GB}} = \frac{1}{n(V_{GB})} = 1 - \frac{\gamma}{2\sqrt{V_{GB} - V_{To} + \left(\frac{\gamma}{2} + \sqrt{\psi_{o}}\right)^{2}}}$$

De cette relation, on obtient l'approximations suivantes :

$$V_{P} \approx \frac{V_{GB} - V_{To}}{n}$$

Commentaire sur le facteur de pente « n »

C'est par définition la pente de l'expression de la tension de seuil $V_{TB}(V_i)$ lorsque le potentiel de surface V_i atteint la valeur de la tension de pincement V_P :

Remarque :

D'un point de vue de concepteur de circuit intégrés analogiques, la différence essentielle entre le modèle EKV (EPFL) et les autres familles de modèles BSIM (Berkeley), MOS (Philips), etc. c'est d'avoir pensé à 'linéariser' la tension de seuil.

Au lieu de travailler avec une expression très peu pratique de $V_{TB}(V_i)$:

 $V_{TB}(V_i) = V_{To} + V_i + \gamma \left(\sqrt{\psi_o + V_i} - \sqrt{\psi_o}\right)$

On utilise une relation simple qui reste une bonne approximation en régime de forte saturation

 $V_{TB}(V_i) = V_{To} + nV_i$

A partir de la relation entre la tension de grille et le potentiel de surface, nous avons conclu qu'en régime saturé, c'est-à-dire pour $\Psi_s \ge \Psi_0$ avec $\Psi_0 = 2\phi_F + \Delta \phi$ le potentiel de surface était considéré indépendant de la tension de grille.

En conséquence, la tension de grille V₆ varie avec le potentiel local du canal V_i

Conditions aux limites

La tension de grille minimum qui correspond à $Q_i = 0$ et $V_i = 0$, est la tension de seuil à l'équilibre électrostatique $V_{\tau 0}$, c'est-à-dire sans effet de substrat (backgate effect).

La tension de grille est maximum à $V_{GB} = V_{TB}(V_P)$, lorsque $Q_i = 0$ et $V_i = V_P$, c'est-à-dire, lorsque le potentiel local du canal V_i est égale à la tension de pincement.

Représentation du graphique de Memmelink

Ce graphe s'obtient à partir de V_{TB}(V_i) = V_{To} + nV_i et pour une tension de grille donnée V_{GB}

Fonctionnement en régime de faible inversion

Relation entre Q_i et ψ_s en régime de faible inversion

Le régime de faible inversion a lieu lorsque $\phi_F \le \psi_s \le 2 \phi_F + V_i$

Dans ce cas, les charges au voisinage de la surface sont principalement dues aux charges fixes Q_d , les charges mobiles Q_i sont relativement peu nombreuses.

$$Q_{sc} = -\frac{\varepsilon_s U_T}{L_D} F(\psi_s; 2\phi_F + V_i)$$
 et $Q_d = -\gamma C_{ox} \sqrt{\psi_s}$

A partir de la charge totale Q_{sc} et de la charge due à la déplétion Q_d , on extrait la charge mobile Q_i

$$Q_{i} = Q_{sc} - Q_{d} = -\gamma C_{ox} \sqrt{U_{T}} \left\{ \left(exp \left(\frac{\Psi_{s} - 2\phi_{F} - V_{i}}{U_{T}} \right) + \frac{\Psi_{s}}{U_{T}} \right)^{\frac{1}{2}} - \left(\frac{\Psi_{s}}{U_{T}} \right)^{\frac{1}{2}} \right\}$$

Après quelques opérations, cette expression devient :

$$-\frac{Q_{i}}{C_{ox}} = \frac{\gamma U_{T}}{2\sqrt{\psi_{s}}} \exp\left(\frac{\psi_{s} - 2\phi_{F} - V_{i}}{U_{T}}\right)$$
Sachant que $n = 1 + \frac{\gamma}{2\sqrt{\psi_{s}}}$ Avec $\psi_{s} = 2\phi_{F} + V_{i}$
 $On \text{ trouve :}$ $-\frac{Q_{i}}{C_{ox}} = U_{T}(n-1)\exp\left(\frac{\psi_{s} - 2\phi_{F} - V_{i}}{U_{T}}\right)$

Relation entre ψ_s et V_i en régime de faible inversion

En régime de faible inversion, la tension de grille s'écrit aussi:

 $V_{GB} = V_{FB} + \psi_s + \gamma \sqrt{\psi_s}$

De même, la tension de seuil V_{To} à l'équilibre électrostatique s'écrit : V_{GB}(Q_i = 0, V_i = 0) = V_{TB}(V_i = 0) = V_{To} = V_{FB} + ψ_o + $\gamma \sqrt{\psi_o}$

De même, la tension de grille en fonction de la tension de seuil V_{To} s'écrit :

$$V_{GB} = V_{To} + (\psi_s - \psi_o) + \gamma (\sqrt{\psi_s} - \sqrt{\psi_o})$$

De même, la tension de grille en fonction de la tension de pincement s'écrit : $V_{GB}(Q_i = 0; V_i = V_P) = V_{TB}(V_P) = V_{To} + V_P + \gamma (\sqrt{\psi_o + V_P} - \sqrt{\psi_o})$

Par identification, on trouve la valeur de ps qui correspond à la faible inversion :

$$\psi_s = \psi_o + V_P$$

Si on trace la courbe donnant l'évolution de ψ_S en fonction de V_P , c'est-à-dire :

On constate que pour différentes valeurs, du potentiel dans le canal V_i, données comme paramètre, La variation du potentiel de surface varie linéairement en fonction de Vp.

On considère que le choix de ψ_0 = $2\phi_F$ + $\Delta\phi$ est arbitraire et dépend de V_G. L'expression du potentiel de surface devient en fonction de V_P :

 $\psi_{s} = \begin{cases} \psi_{o} + V_{p} & \text{quand} & V_{p} \leq V_{i} & \text{Faible inversion} \\ \psi_{o} + V_{i} & \text{quand} & V_{p} \geq V_{i} & \text{Forte inversion} \end{cases}$

2006-10-19

COLE NATIONALE SUPÉRIEURE D'INGÉNIEUR » Contres de Resourdieure

On sait que la faible inversion a lieu, tant que : $\psi_s < 2\phi_F + V_i$

 $\psi_{\textbf{S}}$

Par ailleurs l'expression de la charge en faible inversion précédemment trouvvée :

$$-\frac{Q_{i}}{C_{ox}} = U_{T}(n-1)exp\left(\frac{\Psi_{s} - 2\phi_{F} - V_{i}}{U_{T}}\right)$$

on injecte

$$=: \Psi_{o} + V_{P}$$

$$-\frac{Q_{i}}{C_{ox}} = U_{T}(n-1)\exp\left(\frac{\psi_{o} + V_{p} - 2\phi_{F} - V_{i}}{U_{T}}\right) = U_{T}(n-1)\exp\left(\frac{\psi_{o} - 2\phi_{F}}{U_{T}}\right)\exp\left(\frac{V_{p} - V_{i}}{U_{T}}\right) =$$

Si on pose K_{wi} = (n - 1) exp
$$\left(\frac{\Psi_{o} - 2\phi_{F}}{U_{T}}\right)$$
 = (n - 1) exp $\left(\frac{\Delta\phi_{F}}{U_{T}}\right)$

Ce qui donne

On trouve:
$$-\frac{Q_i}{C_{ox}} = K_{wi}U_T \exp\left(\frac{V_P - V_i}{U_T}\right)$$

$$X_{WI}$$
 est un terme ajustable qui donne : $-\frac{Q_i}{C_{ox}} = 2nU_T exp \left(\frac{V_P - V_i}{U_T}\right)$

Modélisation de l'évolution des charges mobiles Qi dans le canal suivant

les modes de fonctionnement

Définition du courant de drain

Calcul du courant de drain

- D'un courant de conduction dû au champ longitudinal.
- D'un courant de diffusion dû à un gradient de charges.

En un point M(x,y) du canal, l'expression du courant s'écrit :

$$\begin{split} d(\mathbf{I}_{d}) &= d(\mathbf{I}_{cond}(\mathbf{x},\mathbf{y})) + d(\mathbf{I}_{diff}(\mathbf{x},\mathbf{y})) \\ \text{Avec}: \quad d\mathbf{I}_{cond}(\mathbf{x},\mathbf{y}) &= q\mu(\mathbf{x},\mathbf{y})n(\mathbf{x},\mathbf{y})Wdy\frac{\partial\psi(\mathbf{x},\mathbf{y})}{\partial \mathbf{x}} \\ \text{Et} \quad d\mathbf{I}_{diff}(\mathbf{x},\mathbf{y}) &= q\mu(\mathbf{x},\mathbf{y})U_{T}Wdy\frac{\partial n(\mathbf{x},\mathbf{y})}{\partial \mathbf{x}} \end{split}$$

A. Doukkali

ÉCOLE NATIONALE SUPÉRIEURE D'INGÉNIEURS » CENTRE DE RECHERCHE En M(x,z) la densité des charges mobiles, hors équilibre, s'écrit :

$$n(x,z) = n_{o} \exp\left(\frac{\psi(x,z) - V_{i}(x)}{U_{T}}\right)$$

A partir des ces expressions, le courant dans le canal en M(x,y) s'écrit :

$$dI_{d}(x,z) = -qWdy\mu(x,z)n(x,z)\frac{\partial V_{i}(x)}{\partial x}$$

En supposant que la mobilité dans le canal n'est effective que dans la direction 'x', tel que $\mu(x,z) = \mu(x)$ On obtient après quelques opérations, l'expression du courant :

$$I_{d} = \frac{W}{L} C_{ox} \int_{V_{SB}}^{V_{DB}} \mu(V_{i}) \left(-\frac{Q_{i}}{C_{ox}}\right) dV_{i}$$

De façon générale, on peut écrire :

$$I_{d} = \frac{W}{L} C_{OX} \int_{V_{SB}}^{V_{DB}} B(\Psi_{S}, V_{i}, V_{G}) dV_{i}$$

$$B(\Psi_{S}, V_{i}, V_{G}) = \mu(V_{i}) \begin{bmatrix} -\frac{Q_{i}(V_{i})}{C_{OX}} \end{bmatrix}$$

$$SI \qquad WI$$

$$V_{B} \qquad V_{SB} \qquad V_{DB} \qquad V_{p}$$

Avec $B(\psi_s, V_i, V_G) = \mu(V_i) \left(-\frac{Q_i(V_i)}{Cox}\right)$ qui représente la conductivité locale.

Selon la précision avec laquelle est définie $B(V_S, V_i, V_G)$, on retrouve les différentes familles des modèles décrivant le fonctionnement du transistor MOS.

Hypothèse simplificatrice supplémentaire

Pour tendre vers un modèle simple qui permette de faire des calculs à la main, on considère que la mobilité dans le canal est constante, telle que :

$$\mu(V_i, T) = \mu_0$$

L'expression du courant de drain devient :

$$I_{d} = \mu_{0} C_{OX} \frac{W}{L} \int_{V_{SB}}^{V_{DB}} \left(-\frac{Q_{i}(V_{i})}{C_{OX}} \right) dV_{i} = \beta \int_{V_{SB}}^{V_{DB}} \left(-\frac{Q_{i}(V_{i})}{C_{OX}} \right) dV_{i}$$

Avec $\beta = \mu_0 C_{ox} \frac{W}{L}$ coefficient de transfert

Par analogie avec le transistor bipolaire, l'expression du courant de drain s'écrit alors :

$$I_{d} = I_{F} - I_{R} = \beta \int_{V_{SB}}^{\infty} \left(-\frac{Q_{i}(V_{i})}{C_{OX}} \right) dV_{i} - \beta \int_{V_{DB}}^{\infty} \left(-\frac{Q_{i}(V_{i})}{C_{OX}} \right) dV_{i}$$

$$I_{F} \qquad I_{R}$$

Représentation graphique des diffèrents modes de fonctionnement

ENSICAEN

Caractéristiques courant/tension du transistor MOS en faible inversion

 $V_{\rm DS}\gg U_{\rm T}$

10

A. Doukkali

Caractéristique courant/tension de sortie

Caractéristiques courant/tension de transfert

1/n

5

2006-10-19

ENSICAEN

 $Ln \left[\frac{I_{D}}{I_{D0}} \right] \qquad I_{D} \approx exp \frac{V_{G}}{U_{T}} \\ V_{s} = 0 \qquad V_{s} > 0$

Fonctionnement du transistor MOS en régime dynamique

Fonctionnement du transistor MOS en régime dynamique

Généralités

Dans sa formulation générale, la relation courant/tension, en régime de petits signaux, est donnée par la matrice des admittances

$$\begin{bmatrix} i_{g} \\ i_{d} \\ i_{s} \\ i_{b} \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} & y_{13} & y_{14} \\ y_{21} & y_{22} & y_{23} & y_{24} \\ y_{31} & y_{32} & y_{33} & y_{34} \\ y_{41} & y_{42} & y_{43} & y_{44} \end{bmatrix} \begin{bmatrix} v_{g} \\ v_{d} \\ v_{s} \\ v_{b} \end{bmatrix}$$

A partir de la loi des nœuds on a :

 $\sum Y_{ij}=0$

En régime petits signaux et en BF; et en tenant compte des simplifications suivantes :

$$i_g = 0$$
; $i_b = 0$; $i_d = -i_s$

L'expression du courant de drain s'écrit :

$$i_d = y_{11}v_g + y_{12}v_d + y_{21}v_s + y_{22}v_b$$

Expression des transconductances à partir du modèle général

Usuellement en petits signaux, au lieu d'utiliser les admittances y_{ij} dans l'expression du courant de drain, on utilise les transconductances :

 $i_d = g_m G^V g + g_m D^V d - g_m S^V s + g_m B^V b$

Avec la condition $g_{mG} + g_{mD} - g_{mS} + g_{mB} = 0$

Les notations qu'on trouve habituellement dans la bibliographie sont :

A. Doukkali

 $g_{mG} = g_{m}$; $g_{mD} = g_{d} \circ u g_{ds}$; $g_{mS} e^{\dagger} g_{mB}$

L'expression du courant de drain s'écrit autrement :

$$dI_{d} = \frac{I_{d}}{V_{g}} dV_{g} + \frac{I_{d}}{V_{d}} dV_{d} + \frac{I_{d}}{V_{s}} dV_{s} + \frac{I_{d}}{V_{b}} dV_{b}$$

Avec: $g_{m} = \frac{\partial I_{d}}{\partial V_{g}}$; $g_{d} = \frac{\partial I_{d}}{\partial V_{d}}$; $g_{ms} = -\frac{\partial I_{d}}{\partial V_{s}}$ et $g_{mB} = \frac{\partial I_{d}}{\partial V_{b}}$

En régime de forte inversion et en mode direct, on a : $g_d \approx 0$; d'où : $g_m - g_{ms} + g_{mb} = 0$ Ce qui donne : $g_{ms} = g_m \left(1 + \frac{g_{mb}}{g_m}\right)$ Si on pose : $\chi = \frac{g_{mb}}{g_m}$ et $n = 1 + \chi$

 $g_{ms} = n g_{n}$

On obtient la relation classique :

2006-10-19

Notes de cours -Edition 2006-2007

Approximation de la transconductance Drain-Source en régime de forte inversion

Le courant de drain en fonction de la variation des tensions s'écrit :

$$i_d = g_m v_g + g_d v_d - g_{ms} v_s + g_{mb} v_b$$

ENS

Par ailleurs, $g_d v_d = g_d v_d - g_d v_s + g_d v_s = g_d v_{ds} + g_d v_s$

Si l'on injecte la nouvelle expression de $g_d V_d$ dans \dot{I}_d cela donne :

 $i_d \approx g_m v_g + g_d v_{ds} - g_{ms} v_s + g_{mb} v_b$ car $g_{ms} v_s \gg g_d v_s$

Si de plus on choisit le substrat B comme tension de référence tel que $v_b = 0$ cela donne : $i_d \approx g_m v_g + g_d v_{ds} - g_{ms} v_s$

Approximation de la transconductance par le modèle EKV

L'expression du courant de drain en petits signaux rend mieux compte de l'effet des variables, dans cette écriture le substrat est choisi comme tension de référence

$$i_{d} = \frac{\partial I_{F}}{\partial V_{s}} v_{s} + \frac{-\partial I_{R}}{\partial V_{d}} v_{d} + \frac{\partial (I_{F} - I_{R})}{\partial V_{p}} \frac{\partial V_{p}}{\partial V_{G}} v_{g}$$

$$Avec : -g_{ms} = \frac{\partial I_{F}}{\partial V_{s}} ; g_{d} = \frac{-\partial I_{R}}{\partial V_{d}} v_{d} \quad et \quad g_{m} = \frac{\partial (I_{F} - I_{R})}{\partial V_{p}} \frac{\partial V_{p}}{\partial V_{G}} = \frac{g_{ms} - g_{d}}{n}$$

$$g_{M} = \frac{\partial (I_{F} - I_{R})}{\partial V_{p}} \frac{\partial V_{p}}{\partial V_{G}} = \frac{g_{ms} - g_{d}}{n}$$

$$g_{M} = \frac{\partial (I_{F} - I_{R})}{\partial V_{p}} \frac{\partial V_{p}}{\partial V_{G}} = \frac{g_{ms} - g_{d}}{n}$$

$$g_{M} = \frac{\partial (I_{F} - I_{R})}{\partial V_{p}} \frac{\partial V_{p}}{\partial V_{G}} = \frac{g_{ms} - g_{d}}{n}$$

Expression des transconductances en régime de forte inversion (Suite)

Expression des transconductances en régime de faible inversion (directe)

A partir de l'expression du courant en faible inversion, par simple dérivation, on tire les différentes transconductances

$$I_{D} = I_{Do} exp\left(\frac{V_{G}}{nU_{T}}\right) \left(exp\left(\frac{-V_{D}}{U_{T}}\right) - exp\left(\frac{-V_{S}}{U_{T}}\right)\right)$$

Transconductance de source

Expression des transconductances en régime de faible inversion (Suite)

Transconductance de grille

$$g_{\rm m} = \frac{\partial I_{\rm d}}{\partial V_{\rm g}} = \frac{I_{\rm D}}{n U_{\rm T}}$$

Transconductance drain-source

$$g_{ds} = \frac{\partial I_{d}}{\partial V_{d}} = \frac{I_{Do}}{U_{T}} exp\left(\frac{V_{G}}{nU_{T}}\right) exp\left(\frac{-V_{D}}{U_{T}}\right) = \frac{I_{D}}{U_{T}} \frac{1}{\left(exp\left(\frac{V_{DS}}{U_{T}}\right) - 1\right)}$$

Si $V_{DS} \gg U_{T}$; alors $g_{ds} \approx 0$

Représentation des transconductances en fonction de V_D, en régime saturé.

Annexe : Calcul du courant I_d

Sachant que :

$$\frac{\partial \mathbf{n}(\mathbf{x},\mathbf{z})}{\partial \mathbf{x}} = \frac{\mathbf{n}(\mathbf{x},\mathbf{z})}{\Phi_{\mathsf{T}}} \left\{ \frac{\partial \psi(\mathbf{x},\mathbf{z})}{\partial \mathbf{x}} - \frac{\partial \mathsf{V}_{\mathsf{j}}(\mathbf{x})}{\partial \mathbf{x}} \right\}$$

Dans la direction longitudinale et en un point x du canal, le courant s'écrit :

$$I_{d}(x) = -W\mu(x)\frac{\partial V_{i}(x)}{\partial x} \int_{z_{surf}}^{z_{vol}} qn(x,z) dz = W\mu(x)(-Q_{i})\frac{\partial V_{i}(x)}{\partial x}$$

Le courant total \mathbf{I}_{d} s'obtient en intégrant sur la longueur du canal entre drain et source tel que :

$$\int_{0}^{L} \mathbf{I}_{d}(x) dx = \mathbf{I}_{d} L = W C_{OX} \int_{0}^{L} \left(-\frac{Q_{i}}{C_{OX}} \right) \frac{\partial V_{i}(x)}{\partial x} dx$$

En x = 0 on a $V_i(0) = V_{SB}$ et en x = L on a $V_i(L) = V_{DB}$.

$$I_{d} = \frac{W}{L} C_{OX} \int_{V_{SB}}^{V_{DB}} \left(-\frac{Q_{i}}{C_{OX}} \right) dV_{i}$$

Calculs des capacités du transistor MOS

Répartition des capacités du transistor MOS à canal N

Définition de la capacité de grille en fonction de la tension de grille normalisée

La capacité de grille par unité de surface Cg est donnée par la relation :

 $\frac{1}{C_{sc}}$

(1)

 ΔQ_g

Ca

$$\Delta V_{g}$$
Comme $V_{g} = V_{ox} + \Psi_{s}$. On considère que la variation de V_{g} résulte de celle de V_{ox} et Ψ_{s} tel que :
 $\Delta V_{g} = \Delta V_{ox} + \Delta \Psi_{s}$ (2)
En injectant (2) dans (1) on obtient : $C_{g}^{-1} = \left(\frac{\Delta Q_{g}}{\Delta V_{ox}}\right)^{-1} + \left(\frac{\Delta Q_{g}}{\Delta \Psi_{s}}\right)^{-1} = C_{ox}^{-1} + C_{sc}^{-1}$

Notes de cours -Edition 2006-2007

La capacité surfacique locale de grille équivaut à deux capacités en série telle que : $\frac{1}{C_g} = \frac{1}{C_{ox}}$

. .

Avec:
$$C_{sc} = -\frac{dQ_{sc}}{d\psi_s}$$
 et $Q_{sc} = -\frac{\varepsilon_s U_T}{L_D} F(\psi_s; 2\phi_F + V_i)$
On obtient: $\frac{C_{sc}}{C_{ox}} = \frac{\varepsilon_s t_{ox}}{2\varepsilon_{ox}L_D} \frac{exp\left(\frac{\psi_s - 2\phi_F - V_i}{U_T}\right) - exp\left(-\frac{\psi_s}{U_T}\right) + 1}{F(\psi_s; 2\phi_F + V_i)}$

L'expression de la capacité de grille rapportée à C_{ox} s'écrit : $\frac{C_g}{C_{ox}} = \frac{1}{1 + \frac{C_{ox}}{C}}$

A. Doukkali

2006-10-19

L'expression de la capacité de grille rapportée à C_{ox} s'écrit alors:

$$\frac{C_{g}}{C_{ox}} = \frac{1}{1 + \frac{\varepsilon_{s}t_{ox}}{2\varepsilon_{ox}L_{D}}} \frac{\exp\left(\frac{\psi_{s}-2\phi_{F}-V_{i}}{U_{T}}\right) - \exp\left(-\frac{\psi_{s}}{U_{T}}\right) + 1}{F(\psi_{s}; 2\phi_{F}+V_{i})}$$

1) En régime de faible inversion, lorsque $U_T < \Psi_s < 2 \phi_F + V_i$, la capacité C_{sc} se réduit à C_d , la capacité

relative à la zone de déplétion, soit : $C_{sc} = C_d = \frac{\gamma C_{ox}}{2\sqrt{\psi_s}}$

En limite du régime de faible inversion C_{sc} s'écrit : $C_{sc} = C_d = \frac{\gamma C_{ox}}{2\sqrt{2\phi_F} + V_i} = (n - 1)C_{ox}$

On en déduit l'expression de la capacité de grille en faible inversion en fonction du facteur de pente , n :

$$\frac{C_g}{C_{ox}} = \left(1 + \frac{C_{ox}}{C_{sc}}\right)^{-1} = \left(1 + \frac{1}{n-1}\right)^{-1} = 1 - \frac{1}{n} \qquad \text{Soit}: \quad C_g = C_{ox}\left(\frac{n-1}{n}\right)$$

2) En régime d'inversion modérée et de forte inversion, la capacité de grille redevient voisine de C_{ox} car la zone d'inversion crée une couche conductrice à l'interface Si/SiO₂ qui va écranter l'effet de la capacité C_{d} .

2006-10-19

Représentation de la capacité de grille en fonction de la tension de grille normalisée

V_i, la tension du canal est prise comme paramètre. Cette courbe permet de mesurer le facteur de pente, n

Définition des capacités du transistor MOS à partir du modèle quasi statique

Ce modèle traduit de façon simplifiée le comportement dynamique du transistor MOS. Il rend compte de la manière dont varie la charge totale stockée en chacun des noeuds, Grille , Drain , Source ou Substrat, suite à une variation de la tension correspondant à ces électrodes.

C'est-à-dire, une petite variation de la tension de ΔV_G , ΔV_S , ΔV_D ou ΔV_B se traduit par une variation de la charge totale stockée : ΔQ_G ; ΔQ_B ; ΔQ_D ; ΔQ_S

Ces variations sont traduites par des capacités qui rendent compte de la variation relative :

$$C_{gs} = -\frac{\partial Q_{G}}{\partial V_{S}} \left| V_{B}, V_{G}, V_{D} \right| ; C_{gd} = -\frac{\partial Q_{G}}{\partial V_{D}} \left| V_{B}, V_{G}, V_{S} \right| ; C_{gb} = -\frac{\partial Q_{G}}{\partial V_{B}} \left| V_{S}, V_{G}, V_{D} \right|$$

Calcul des charges totales associées au transistor intrinsèque

L'expression des charges totales sur la grille Q_q^{\dagger} et dans le canal Q_d^{\dagger} et Q_i^{\dagger} sont obtenues par intégration le long du canal des expressions relatives aux charges par unité de surface Q_a , Q_d et Q_i . Soit: $Q_j^{\dagger}\Big|_{j=1, d, a} = \int_0^L Q_j W dx = W \int_0^L Q_j dx$ Ces charges intégrées sur la longueur du canal peuvent s'exprimer en fonction de la tension V_i le long du canal à partir de l'expression du courant de drain : $dx = \mu W \frac{-Q_j}{T} dV$ On obtient: $Q_i^{\dagger} = W \int_0^L Q_i \, dx = -\frac{\mu W^2}{I_d} \int_v^V Q_i^2 \, dV$ $Q_d^{\dagger} = W \int_0^L Q_d dx = -\frac{\mu W^2}{I_d} \int_V^{v_d} Q_i Q_d dV$ $Q_g^{\dagger} = W \int_0^L Q_g dx = -\frac{\mu W^2}{I_d} \int_{V_d}^{V_d} Q_i Q_g dV$

On néglige les charges d'interface Q_{ss}.

D'après la neutralité électrique, la somme des charges est nulle.

2006-10-19

Expression des charges totales en régime de faible inversion.

Charge totale d'inversion

A partir des deux expressions ci-dessous :

$$\begin{pmatrix}
Q_{i}^{\dagger} = W \int_{0}^{L} Q_{i} dx = -\frac{\mu W^{2}}{I_{d}} \int_{V_{s}}^{V_{d}} Q_{i}^{2} dV \\
Q_{i} = -K_{WI} U_{T} C_{ox} exp \left(\frac{V_{P} - V_{i}}{U_{T}} \right) \\
K_{WI} = (n - 1) exp \left(\frac{\Psi_{o} - 2\phi_{F}}{U_{T}} \right)$$

On obtient la charge totale :

Q

Α

$$F = -C_{ox}^{\dagger} \frac{K}{2} U_{T} (i_{F} + i_{R})$$

$$vec: C_{ox}^{\dagger} = WLC_{ox}$$

$$i_{F} = exp\left(\frac{V_{P} - V_{s}}{U_{T}}\right)$$

$$i_{R} = exp\left(\frac{V_{P} - V_{d}}{U_{T}}\right)$$

Charge totale de déplétion

En régime de faible inversion, la charge d'interface est due principalement à Q_d et le potentiel de surface ψ_s est constant le long du canal entre drain et source.

A partir de la condition aux limites : $\Psi_s = \Psi_o + V_p$ La charge de déplétion par unité de surface s'écrit : $Q_d = -\gamma C_{ox} \sqrt{\Psi_o + V_p}$

L'expression de la charge totale de déplétion s'écrit : $Q_d^{\dagger} = -\gamma C_{ox}^{\dagger} \sqrt{\psi_o + V_p}$

NSICAEN

Charge totale sur la grille

Elle s'obtient à partir de l'équation de neutralité: $Q_{g}^{\dagger} = -Q_{d}^{\dagger} - Q_{i}^{\dagger} - Q_{ox}^{\dagger}$ $= \gamma C_{ox}^{\dagger} \sqrt{\psi_{o} + V_{p}} - Q_{i}^{\dagger} - Q_{ox}^{\dagger}$ Soit: $Q_{g}^{\dagger} \approx \gamma C_{ox}^{\dagger} \sqrt{\psi_{o} + V_{p}} - Q_{ox}^{\dagger}$

Expression des charges totales en régime de forte inversion.

A partir de l'expression du courant de drain :

$$I_{d} = \frac{\beta n}{2} \left\{ (V_{P} - V_{s})^{2} - (V_{P} - V_{d})^{2} \right\} = 2\beta n U_{T}^{2} \left\{ \left(\frac{V_{P} - V_{s}}{2 U_{T}} \right)^{2} - \left(\frac{V_{P} - V_{d}}{2 U_{T}} \right)^{2} \right\}$$

On définit l'expression normalisée des courants de drain direct et inverse :

$$i_{F} = \frac{I_{F}}{I_{S}} = \left(\frac{V_{P} - V_{s}}{2 U_{T}}\right)^{2} ; \quad i_{R} = \frac{I_{R}}{I_{S}} = \left(\frac{V_{P} - V_{d}}{2 U_{T}}\right)^{2} \qquad \text{Avec } I_{S} = 2\beta n U_{T}^{2}$$

Charge totale d'inversion

De même, à partir de
$$Q_i^{\dagger} = W \int_0^L Q_i \, dx = -\frac{\mu W^2}{I_d} \int_{V_s}^{V_d} Q_i^2 \, dV$$
 et $-Q_i = C_{ox} n (V_P - V_i)$
On trouve : $Q_i^{\dagger} = -\frac{4nU_T C_{ox}^{\dagger}}{3} \left[\frac{i_F + i_R + \sqrt{i_F i_R}}{\sqrt{i_F} + \sqrt{i_R}} \right]$
2006-10-19 R . Doukkali Notes de cours -Edition 2006-2007

17

Charge totale de déplétion

A partir des équations suivantes :

$$\begin{cases} Q_d^{\dagger} = W \int_0^L Q_d \, dx = -\frac{\mu W^2}{I_d} \int_{V_s}^{V_d} Q_i \, Q_d \, dV \\ et \\ -Q_i = C_{ox} n (V_P - V_i) ; \quad Q_d = -\gamma C_{ox} \sqrt{\psi_o + V_p} \end{cases}$$

On en déduit l'expression de la charge totale de déplétion :

$$Q_d^{\dagger} = -\gamma C_{ox} \sqrt{\psi_o + V_p} - \frac{n-1}{n} Q_{i}$$

Charge totale sur la grille

A partir de l'équation de neutralité : $Q_g^{\dagger} = -Q_d^{\dagger} - Q_i^{\dagger} - Q_{ox}^{\dagger}$

On obtient l'expression de la charge totale de grille :

Soit:
$$Q_g^{\dagger} = \gamma C_{ox}^{\dagger} \sqrt{\psi_o + V_p} - \frac{1}{n} Q_i^{\dagger} - Q_{ox}^{\dagger}$$

Calcul des capacités

Les différentes capacités entre la grille est les autres nœuds Source, Drain et Substrat traduisent la variation de la charge de la grille ΔQ_G en fonction de la variation des tensions V_S , V_D , le potentiel V_B du Substrat en tant que tension de référence est maintenue constante.

Ce qui se traduit par : $\Delta V_G = \Delta V_S = \Delta V_D = -\Delta V_B$

L'expression des capacités intrinsèques, en régime de forte inversion s'obtient à partir de la différentielle de Q_G .

La variation de la charge totale de la grille en fonction de la variation de V_B s'écrit :

$$dQ_{G}^{\dagger} = \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{S}} \middle| V_{B}, V_{G}, V_{D}\right) dV_{S} + \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{D}} \middle| V_{B}, V_{G}, V_{S}\right) dV_{D} + \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{G}} \middle| V_{B}, V_{G}, V_{S}\right) dV_{G}$$

$$dQ_{G}^{\dagger} = \left\{-\left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{S}} \middle| V_{B}, V_{G}, V_{D}\right) - \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{D}} \middle| V_{B}, V_{G}, V_{S}\right) - \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{G}} \middle| V_{B}, V_{G}, V_{S}\right)\right\} dV_{B}$$

$$\frac{\partial Q_{G}^{\dagger}}{\partial V_{B}} = C_{gb} = C_{gs} + C_{gd} - \frac{\partial Q_{G}^{\dagger}}{\partial V_{GB}} \middle|_{V_{B}, V_{D}, V_{S}} = C_{gs} + C_{gd} - \frac{1}{n} \left(\frac{\partial Q_{G}^{\dagger}}{\partial V_{p}} \middle|_{V_{B}, V_{D}, V_{S}}\right)$$

De même, la variation de la charge totale du substrat en fonction de la variation des autres potentiels V_S et V_D s'écrit : $C_{bs} = -\frac{\partial Q_B}{\partial V_S}\Big|_{V_B, V_G, V_D}$; $C_{bd} = -\frac{\partial Q_B}{\partial V_D}\Big|_{V_B, V_G, V_S}$

P. Doukkali

2006-10-19

En combinant ces relations, on obtient :

$$C_{bs} = (n-1)C_{gs}$$
 et $C_{bd} = (n-1)C_{gd}$

Ces deux relations permettent que le calcul de toutes les capacités se fasse à partir de la dérivée partielle de la charge totale de la grille.

2006-10-19

A. Doukkali

 $\Delta Q_{5}^{\dagger} = -C_{bs} \Delta V_{B} \qquad \Delta Q_{D}^{\dagger} = -C_{bd} \Delta V_{G}$

Calcul des capacités en régime de faible inversion

L'expression des capacités intrinsèques, en régime de faible inversion devrait s'obtenir, comme pour la forte inversion, à partir de la dérivée partielle de Q_G qui traduit la contribution des différentes variations.

Soit:
$$Q_g^{\dagger} = \gamma C_{ox}^{\dagger} \sqrt{\psi_o + V_p} - Q_i^{\dagger} - Q_{ox}^{\dagger}$$

Si cette relation traduit bien l'effet de la variation de potentiel des différentes électrodes sur la grille. Elle ne modélise pas bien la relation entre les variations de ΔV_S et ΔV_D avec celle de la charge totale de la grille. Autrement dit, C_{gs} et C_{gd} ne sont pas bien définis par cette relation. Une meilleure évaluation de C_{gs} et C_{gd} se fait à partir de la charge Qi dans le canal en faible inversion.

$$\begin{cases} C_{gs} = \frac{\partial Q_{B}^{\dagger}}{\partial V_{S}} \left| V_{B}, V_{D}, V_{G} + \frac{\partial Q_{i}^{\dagger}}{\partial V_{S}} \right| V_{B}, V_{D}, V_{G} = -C_{bs} + \frac{\partial Q_{i}^{\dagger}}{\partial V_{S}} \left| V_{B}, V_{D}, V_{G} \right| \\ C_{bs} = (n-1)C_{gs} \\ Q_{i}^{\dagger} = -C_{ox}^{\dagger} \frac{K}{2} U_{T} (i_{F} + i_{R}) \\ i_{F} = exp\left(\frac{V_{P} - V_{s}}{U_{T}}\right) ; \quad i_{R} = exp\left(\frac{V_{P} - V_{d}}{U_{T}}\right) \end{cases}$$

A partir de ces relations et après quelques opérations, on trouve :

$$C_{gs-WI} = \frac{1}{n} \frac{\partial Q_{i}^{\dagger}}{\partial V_{S}} | V_{B}, V_{D}, V_{G} =$$
$$C_{gs-WI} = C_{ox}^{\dagger} \frac{K_{WI}}{2n} i_{F} = C_{ox}^{\dagger} i_{F}$$

De la même façon, la capacité C_{qd} en régime de faible inversion s'écrit :

 $C_{gd-WI} = C_{ox}^{\dagger} i_{R}$

La capacité C_{gb} , en régime de faible inversion, calculée à partir de la variation de la charge totale du substrat Q_B s'écrit :

$$C_{gb-WI} = C_{bg-WI} = -\frac{1}{n} \frac{\partial Q_{B}^{\dagger}}{\partial V_{P}} | V_{B}, V_{D}, V_{S} = \frac{n-1}{n} C_{ox}^{\dagger}$$

Calcul des capacités en régime de forte inversion

L'expression des capacités intrinsèques, en régime de strong inversion s'obtient à partir de la différentielle de Q_G

Soit:
$$Q_{g}^{\dagger} = \gamma C_{ox}^{\dagger} \sqrt{\psi_{o} + V_{p}} - \frac{1}{n} Q_{i}^{\dagger} - Q_{ox}^{\dagger}$$

On trouve: $C_{gs-SI} = -\frac{\partial Q_{G}^{\dagger}}{\partial V_{S}} \left| V_{B} \cdot V_{G} \cdot V_{D} = \frac{2}{3} C_{ox}^{\dagger} \left[1 - \frac{i_{R}}{\left(\sqrt{i_{F}} + \sqrt{i_{R}}\right)^{2}} \right]$
 $C_{gd-SI} = -\frac{\partial Q_{G}^{\dagger}}{\partial V_{D}} \left| V_{B} \cdot V_{G} \cdot V_{S} = \frac{2}{3} C_{ox}^{\dagger} \left[1 - \frac{i_{F}}{\left(\sqrt{i_{F}} + \sqrt{i_{R}}\right)^{2}} \right]$
 $C_{gb-SI} = \frac{1}{n} \left| \frac{\partial Q_{G}^{\dagger}}{\partial V_{p}} \right| V_{B} \cdot V_{S} - C_{gs} - C_{gd} = \frac{n-1}{3n} C_{ox}^{\dagger} \left[1 - \frac{4\sqrt{i_{F}i_{R}}}{\left(\sqrt{i_{F}} + \sqrt{i_{R}}\right)^{2}} \right]$

Dans l'expression de $C_{\rm gb-SI}$, on considère que le facteur de pente n est constant. Les capacités $C_{\rm gb}$ et $C_{\rm gb}$ se déduisent des relations précédemment établies

Tableau récapitulatif donnant les capacités intrinsèques selon les

régimes de fonctionnement :

ENSICAEN

Caractéristique
$$\frac{g_m}{I_d}$$
 :

En fonctionnement dynamique, ce paramètre évalue l'aptitude du transistor MOS à convertir une tension en courant suivant les différents modes de fonctionnement.

Ce paramètre est appelé pouvoir de commande - g_m par rapport à est par analogie avec la mécanique comme la vitesse par rapport à l'accélération.

Pour une puissance donnée - pour un courant donné - g_m mesure l'efficacité de g_m

- n traduit l'efficacité du contrôle de la tension de grille sur le canal

Effets secondaires

Les imperfections du modèle sont considérés au second ordre et les paramètres responsables de l'imperfection sont analysés et révisés de façon à obtenir une précision satisfaisante.

Les principaux effets secondaires sont :

- Réduction de la mobilité sous l'effet des champs électriques vertical et transverse.
- Dopage non uniforme dans le canal.
- Modulation de la longueur du canal.
- La dérive thermique.
- Les effets liés à la géométrie en technologie submicronique.

Modulation du canal

Aspect physique du solide

On obtient:
$$\frac{\Delta L}{L} = \frac{\zeta}{L} \frac{(V_{D} - V_{P})}{2\sqrt{\phi_{B}}} = \frac{(V_{D} - V_{P})}{V_{A}}$$

V_A est appelée tension de modulation du canal ou encore tension d'Early

Aspect électrique (suite)

Une autre façon d'aborder le problème consiste à considérer L_{eff} Tel que : $~L_{eff}$ = L - ΔL

Le courant de drain s'écrit alors :

$$I_{d} = \frac{\beta_{0}}{2n} \frac{W}{L_{eff}} \left[V_{GB} - V_{TB} \right]^{2} = \frac{\beta_{0}}{2n} \frac{W}{L} \left[V_{GB} - V_{TB} \right]^{2} \frac{L}{L_{eff}} = I_{F} \left[\frac{L}{L - \Delta L} \right]$$

Soit
$$I_{d} = I_{F} \left[1 + \frac{\Delta L}{L} \right] = I_{F} \left[1 + \frac{V_{D} - V_{P}}{V_{A}} \right]$$

Dans le modèle Level I, cette écriture devient :

$$\mathbf{I}_{d} = \mathbf{I}_{F} \left[\begin{array}{c} 1 \\ + \end{array} \frac{V_{DS} - \left[V_{P} - V_{S}\right]}{V_{A}} \right] \approx \mathbf{I}_{F} \left[\begin{array}{c} 1 \\ + \end{array} \frac{V_{DS}}{V_{A}} \right]$$

Effet de la température

Le comportement électrique du transistor MOS peut être caractérisé essentiellement par 3 paramètres V_{To} , β et n le facteur de pente. Au premier ordre, l'effet de la température sur le transistor MOS sera le résultat de l'effet conjugué de ces 3 paramètres soumis à la variation de la température.

Comportement thermique de V_{to}

La variation de la tension de seuil en fonction de la température est quasi-linéaire

$$V_{To} = V_{FB} + \psi_o + \gamma \sqrt{\psi_o} = V_{FB} + 2\phi_F + \gamma \sqrt{2\phi_F} = Cte + 2\phi_F + \gamma \sqrt{2\phi_F}$$

Dans l'expression de $V_{To},\,\psi_{_0}$ à travers φ_F est le seul paramètre qui dépend de la température.

$$\frac{dV_{To}}{dT} = \frac{dV_{To}}{d\phi_{F}} \frac{d\phi_{F}}{dT} = \left(1 + \frac{\gamma}{\sqrt{2\phi_{F}}}\right) \frac{d\phi_{F}}{dT} = (2n_{o} - 1) \frac{d\phi_{F}}{dT}$$

$$Ou \quad n_{o} = n(V_{P} = 0) = n(V_{G} = V_{T})$$

$$Comme \quad \phi_{F} = \frac{KT}{q} Ln\left(\frac{N_{B}}{n_{i}}\right) \quad et \quad n_{i}(T) = AT^{\frac{3}{2}} exp\left(-\frac{V_{Go}}{U_{T}}\right)$$

A. Doukkali

Avec E_G : Gap du Silicium et A = Cte

2006-10-19

Comportement thermique de V_{to} (Suite)

$$\begin{aligned} \text{Alors}: \ \varphi_{\text{F}} = U_{\text{T}} \ \text{Ln} \left(\frac{N_{\text{B}}}{A} \right) + \frac{V_{\text{Go}}}{2} \quad \text{et} \quad \frac{d\varphi_{\text{F}}}{dT} = \frac{1}{T} \left(\varphi_{\text{F}} - \frac{V_{\text{Go}}}{2} \right) &\leq 0 \\ \\ \text{Donc}: \quad \frac{dV_{\text{To}}}{dT} = \frac{2n_{\text{o}} - 1}{T} \left(\varphi_{\text{F}} - \frac{V_{\text{Go}}}{2} \right) \quad ; \text{soit environ } 2mV/^{\circ} \end{aligned}$$

Le comportement thermique de la tension de seuil V_{To} , est très voisin de celui de V_{BE} .

Comportement thermique du paramètre de transfert β

Comme : $\beta = \mu_0 C_{0x} \frac{W}{L}$

L'effet de la température sur le paramètre β est le même que celui de la mobilité

$$\mu_{o}(T) = \mu_{o}(T_{o}) \left(\frac{T}{T_{o}}\right)^{-\alpha}$$
 Avec $1.5 \le \alpha \le 2$

Donc: $\frac{d\beta}{dT} = -\frac{\alpha}{T}$ Environ -0.5% /°C lorsque $\alpha = 1.5$

Comportement thermique du facteur de pente n

A partir de son expression, on constate qu'il dépend de la température par φ_{F} :

Ainsi:
$$n = 1 + \frac{\gamma}{2\sqrt{2\phi_F} + V_P}$$
 donne $\frac{dn}{dT} = \left(\frac{1-n}{2\phi_F} + V_P\right) \frac{d\phi_F}{dT}$
Soit en définitive : $\frac{dn}{dT} = \frac{n-1}{2T} \left(\frac{V_{Go} - 2\phi_F}{2\phi_F} + V_P\right)$ (Inférieur à 0.15%/C)

Les plans de masques des principaux composants intégrés

Transistor de taille minimum (canal n)

NSICAEN

Caractéristiques géométriques $L = L_m + \Delta L$

$$W = W_m + \Delta W$$

Les dimension sur masques L_m et W_m sont différentes des dimensions électriques L et W

 ΔL et ΔW peuvent être dus soit à :

- La fabrication des masques
- Sous ou sur gravure
- Diffusion latérale sous la grille

COLE NATIONALE SUPÉRIEURE D'INCÉNIEURS R CENTRE DE RECHERCHE

Transistors très larges

Transistor sous forme de doigts interdigités :

Transistor en forme de peigne

Contact à la couche métal tout le long des doigts, afin de minimiser les résistances en série dans S et D

Caractéristiques électriques et géométriques

- Faible surface totale.

 $\frac{W}{I}$] 1; W_{L} peut atteindre 10⁴

- Résistance série Drain et Source élevée.
- Grande résistance de Grille.
- Les jonctions Drain Source sont minimales.

Caractéristiques électriques

et géométriques

- Plus grande surface totale occupée.
- Faible résistance série Drain et Source.
- Faible résistance de Grille.
- Dissymétrie drain-source si le nombre de grilles en parallèle est paire.

Transistors concentrique

Transistors à structure fermée

Transistors en forme de gaufre : (Waffle)

Caractéristiques électriques et géométriques

- Faible capacité de Drain
- Dissymétrie Drain-Source.
- Pas d'effet de bord du canal (moins de fuite et de bruit)

Caractéristiques électriques et géométriques

- Grand nombre de structures fermées en parallèle
- Chaque Drain est entouré de 4 Sources et vice-versa
- Accès à chaque Drain et Source par métal (connexion à 45°C)

Transistors bipolaires latéral compatibles CMOS

Structure concentrique a dimensions minimales, au centre l'émetteur a une surface minimum. Grande résistance en série dans la base r_{bb^\prime}

Transistor bipolaire latéral optimisé

Ce transistor de type PNP à base faiblement dopée se caractérise par :

- En contactant tout le pourtour de la base, la résistance r_{bb}, de la base est ainsi réduite
- Le contact au substrat entoure toute la structure.
- Gain élevé (β_F > 50)
- Faible fréquence de transition f_T

Objectif

- Le design est conçu tel que :
 - La dépendance de la température soit insignifiante.
 - La dépendance du procédé technologique soit réduite au minimum.
 - * En premier lieu, on cherche a minimiser la dérive de V_{To} ; β ; R; $C/_{unité}$ de surface...
 - * En second lieu, on cherche à minimiser l'effet de la tension d'early V_A ; du bruit en $1/f_{...}$

Comment procéder ?

Utiliser dans le design : Des références de tension externes ou des références bandgap intégrées. Des circuits PTAT et CTAT.

Eliminer, des caractéristiques du circuittels que gain, R_{in}, Rout, etc., les dépendances directes avec les paramètres technologiques

- En utilisant la contre réaction.
- En réalisant des design utilisant l'erreur relative plutôt que l'erreur absolue : rapport de résistance, de capacité, etc.
- En respectant les consignes d'appairage des composants monolithiques.

Vérifier que le circuit satisfait aux spécifications dans les conditions extrêmes de variation valeurs min et max de la température et de la tension d'alimentation.

Principales règles pour optimiser le 'Matching' d'un design

Afin de réduire au minimum le des-appariement ou des-appairage des composants constituants un circuit intégré, ceux-ci doivent être placés dans une configuration de placement et de géométrie qui tienne compte des critères suivants :

- Même structure
- Même température
- Même forme et même dimension
- Minimum de distance entre les composants
- Même barycentre
- Même orientation
- Même environnement
- Pas de taille minimale

Remarque

Le critère d'importance et l'indice de pertinence d'une règle par rapport aux autres dépend du procédé technologique utilisé, du type de composants concernés et de leur fonction électrique.

De l'expérience, ont été retenues 8 règles de design permettant d'optimiser la similitude des composants de même type. Ces règles d'appairage sont développées ci- dessous :

Règle 1 : même structure

Les composants appairés doivent avoir exactement la même structure et utiliser le même type de couches afin de dépendre des mêmes paramètres technologiques.

Contre-exemples :

Capacité réalisées à partir d'oxyde mince et celle fabriquée à partir d'un oxyde épais.

Résistance Si Polysilicium et résistance diffusée.

Transistor à canal N et à canal P.

Règle 2 : même température

Lorsque l'échauffement de certains composants monolithiques entraînent une dissipation thermique significative dans le circuit intégré, il faudra, pour réduire l'effet de ce gradient thermique sur les composants à apparier:

- Placer les composants loin de la source de chaleur
- Placer les composants sur la même isotherme, en utilisant la symétrie ou une disposition common centroïde

Règle 3 : même forme et même taille

Bien que les caractéristiques électriques d'un composant intégré ne dépendent, en première approximation, que du produit des géométries WL et/ou de leur rapport W/L, on considère que deux composants de même type sont appairés lorsqu'ils sont géométriquement identiques.

Il se peut que les composants qui sont sensés être identiques sur le layout deviennent lors de la Fabrication différents.

En général, ces différences sont dues à :

Sur- ou sous-gravure des motifs.

Les effets de bord.

La diffusion latérale.

Règle 4 : proximité

Pour réduire au minimum la disparité entre un même paramètre (résistivité, dopage, constante Diélectrique) correspondant à un même type de composants des paramètres électriques, il faut placer les composants dans un proche voisinage afin de tirer le meilleur avantage de la corrélation spatiale.

Exemple

Miroir de courant à sortie multiple

Bon appairage

A. Doukkali

Règle 5 : même barycentre ou common centroïd

Pour minimiser l'effet du gradient thermique, on place les composants suivant une répartition qui garantit la coïncidence des centres de gravité des composants à appairer. En pratique, pour satisfaire à cette condition les composants a appairer sont scindés en deux demi composants et regroupés comme ci-dessous par exemple :

Règle 6 : même orientation

Pour minimiser l'effet de l'anisotropie

- Lors de certaines étapes de fabrication.
- Celui induit par le substrat soumis aux contraintes d'encapsulation.

Exemple :

Cas de la paire différentielle

Très mauvaise disposition

D٦

mauvaise disposition car les orientations de S et D sont opposées

Bon placement

S

Le non-respect de cette règle peut entraîner une erreur systématique sur les tensions de seuil allant jusqu'à 10mV.

2006-10-19

X

Bon placement pour cette règle

mais violation de la règle 7

A. Doukkali

Notes de cours -Edition 2006-2007

Règle 7 : même environnement

De même, la condition d'appairage nécessite que l'environnement des transistors concernés soit strictement même.

L'effet de l'environnement sur les caractéristiques électriques n'est pas reproductible et difficilement interprétable comme phénomène.

Ce phénomène n'affecte pas les lignes d'interconnection métalliques.

Exemple

Dans le cas d'un miroir de courant à sortie multiple et pour que tous les transistors aient le même environnement, on ajoute des transistors supplémentaires, appelés dummy transistors, à la périphérie des transistors extrêmes.

A. Doukkali

Règle 8 : Taille non minimale

L'appairage des composants se dégrade lorsqu'on les choisit de taille minimale. Ceci à cause de :

- L'effet des fluctuations spatiales

- L'effet des fluctuations de géométrie.

Bibliographie

Référence principale

Eric Vittoz ; Notes de cours "*Conception de circuits intégrés analogiques*" ; EPFL ; Lausanne Références générales

a) livres

A.S.Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, 1967

R.S.Muller, T.I.Kamins, Device Electronics for Integrated Circuits, Wiley, New York, 1977 (dispositifs)

S.M.Sze, Physics of Semiconductor Devices, Wiley, New York, 1981 (physique, dispositifs).

Y.P.Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill, 2nd edition, 1998.

E.Vittoz et al, Low Power Design, A Collection of CSEM Papers, Electronic Design Books, Penton Publishing, 1995.

R.Gregorian, G.Temes, Analog MOS Integrated Circuits for Signal Processing, Wiley and Sons, 1986.

P.E.Allen, D.R.Holberg, CMOS Analog Circuit Design, The Dryden Press, Saunders College Publishing, 1987.

Y.P.Tsividis , J.Franca (editors), Design of VLSI Circuits for Telecommunication and Instrumentation, Prentice Hall, 1994.

K.Laker and W.Sansen, Design of Analog Integrated Circuits and Systems, Mc Graw-Hill, , 1994.

P. Gray, P. Hurst, S. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th Edition, John Wiley and Sons, 2001 (circuits bipolaires et MOS).

B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.

R.M. Warner and B.L.Grung, *MOSFET, Theory and Design*, Oxford University Press, 1999. Thomas Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998

Références spécifiques :

Faible inversion

E. Vittoz et J. Fellrath ; "CMOS analog integrated circuits based on weak inversion operation", IEEE J. Solid State Circuits, Vol. SC-12, pp.224-231, june 1977.

J. Fellerath et E. Vittoz, "Small signal model of MOS transistors in weak inversion", Proc. Journée d'Electronique 1977, EPF-Lausanne, pp. 315-324.

Modèle continu faible-forte inversion avec référence au substrat

H. Oguey et S. Cserveny, "MOS modelling at low current density", Summer course on "Process and Device Modelling" ESAT-Leuven, Belgium, June 1983.

E. Vittoz, "Micropower Techniques", in Design of VLSI Circuits for Telecommunication and signal Processing, Editors J. Franca et Y. Tsividis, Prentice Hall, 1994.

C. Enz, F. Krummennacher et E. Vittoz, "An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications", Analog Integrated Circuits and Signal Processing, Vol. 8,pp.83-114, 1995.

E. Vittoz ," MOS transistors operated in the lateral bipolar mode and their applications in CMOS technology", IEEE J. Solid State Circuits, vol. SC-18, pp. 273-279, june 1983.

A. Doukkali