Lecture 18 Amplificateurs à Transistor (I) Common-Source Amplifier

Outline

- Amplifier fundamentals
- Common-source amplifier
- Common-source amplifier with current-source supply

Amplifier Fundamentals

- Source resistance R_S is associated *only* with small signal sources
- Choose $I_D = I_{SUP} ---> DC$ output current

$$- I_{OUT} = 0$$
$$- V_{OUT} = 0$$

2. Common-Source Amplifier:

V-VSS

- Consider intrinsic voltage amplifier no loading
 - • $R_s = 0$ • $R_L ---> \infty$ • $V_{GS} = V_{BIAS} - V_{SS}$
- V_{BIAS} , R_D and W/L of MOSFET selected to bias transistor in saturation and obtain desired output bias point (i.e. $V_{OUT} = 0$).

Watch notation: $v_{OUT}(t)=V_{OUT}+v_{out}(t)$

Load line view of amplifier:

Transfer characteristics of amplifier:

Want:

- Bias point calculation;
- Limits to signal swing
- Small-signal gain;
- Frequency response [in a few days]

Bias point: choice of V_{BIAS} , W/L, and R_D to keep transistor in saturation and to get proper quiescent V_{OUT} . Assume MOSFET is in saturation:

$$I_D = \frac{W}{2L} \mu_n C_{ox} \left(V_{BIAS} - V_{SS} - V_T \right)^2$$
$$I_R = \frac{V_{DD} - V_{OUT}}{R_D}$$

If we select $V_{OUT}=0$:

$$I_D = I_R = \frac{W}{2L} \mu_n C_{ox} \left(V_{BIAS} - V_{SS} - V_T \right)^2 = \frac{V_{DD}}{R_D}$$

Then:

$$V_{BIAS} = \sqrt{\frac{2I_D}{\frac{W}{L}\mu_n C_{ox}}} + V_{SS} + V_T$$

Equation that allows us to compute needed $V_{\rm BIAS}$ given $R_{\rm D}$ and W/L.

• Upswing: limited by MOSFET going into cut-off.

$$v_{out, \max} = V_{DD}$$

• Downswing: limited by MOSFET leaving saturation.

$$V_{DS,sat} = V_{GS} - V_T = \sqrt{\frac{2I_D}{\frac{W}{L} \mu_n C_{ox}}}$$

$$v_{out,\min} - V_{SS} = V_{BIAS} - V_{SS} - V_T = \sqrt{\frac{2I_D}{\frac{W}{L}\mu_n C_{ox}}}$$

Then:

or

$$v_{out,\min} = V_{BIAS} - V_T$$

6.012 Spring 2004

Generic view of the effect of loading on small-signal operation

Two-port network view of small-signal equivalent circuit model of a voltage amplifier:

R_{in} is *input resistance* R_{out} is *output resistance* A_{vo} is *unloaded voltage gain*

Small-signal voltage gain A_{vo} **:** draw small-signal equivalent circuit model: Remove R_L and R_S

Input Resistance

- Calculation of input resistance, R_{in}:
 - Load amplifier with R_L
 - Apply test voltage (or current) at input, measure test current (or voltage).

For common-source amplifier:

No effect of loading at input.

Output Resistance

- Calculation of output resistance, R_{out}:
 - Load amplifier with R_S
 - Apply test voltage (or current) at output, measure test current (or voltage).
 - Set input source equal zero

For common-source amplifier:

Current Source Supply

I—V characteristics of current source:

Equivalent circuit models :

large-signal model

- $i_{SUP} = 0$ for $v_{SUP} \le 0$
- $i_{SUP} = I_{SUP} + v_{SUP} / r_{oc} \text{ for } v_{SUP} > 0$
- High small-signal resistance r_{oc.}

Use PMOS for current source supply

Bias point: Assume both transistors in saturation $V_{OUT} = 0$

$$I_{SUP} = -I_{Dp} = \left(\frac{W}{2L}\right)_p \mu_p C_{ox} \left(V_{DD} - V_B + V_{Tp}\right)^2$$

$$I_{SUP} = I_{Dn} = \left(\frac{W}{2L}\right)_n \mu_n C_{ox} \left(V_{BIAS} - V_{SS} - V_{Tn}\right)^2$$

$$V_{BIAS} = \sqrt{\frac{2I_{SUP}}{\left(\frac{W}{L}\right)_n \mu_n C_{ox}}} + V_{SS} + V_T$$

• Upswing: limited by PMOS leaving saturation.

$$V_{SD,sat} = V_{SG} + V_{Tp} = \sqrt{\frac{2I_{SUP}}{\left(\frac{W}{L}\right)_p}\mu_p C_{ox}}$$

 $V_{DD} - v_{out,max} = V_{DD} - V_B + V_{Tp}$ $v_{out,max} = V_B - V_{Tp}$

- Downswing: limited by NMOS leaving saturation.
- Same result as with resistive supply current.

$$v_{out,\min} = V_{BIAS} - V_T$$

3. Common-source amplifier with currentsource supply (contd.)

Current source characterized by high output resistance: r_{oc} . Significantly higher than amplifier with resistive supply.

- Voltage gain: $A_{vo} = -g_m (r_o //r_{oc})$.
- Input resistance : $R_{in} = \infty$
- Output resistance: $R_{out} = r_o / / r_{oc}$.

Relationship between circuit figures of merit and device parameters

Remember:

$$g_m = \sqrt{2I_D \frac{W}{L} \mu_n C_{ox}}$$
$$r_o \approx \frac{1}{\lambda_n I_D} \propto \frac{L}{I_D}$$

Then:

	Circuit Parameters		
	A _{vo}	R _{in}	R _{out}
Device*	$g_{m}(r_{o}//r_{oc})$	∞	$r_o //r_{oc}$
Parameters	811(-000)		-000
I_{SUP} \uparrow	\downarrow	_	\downarrow
w↑	\uparrow	-	-
$\mu_n C_{ox} \uparrow$	\uparrow	-	-
L 1	\uparrow	-	\uparrow

 \ast adjustments are made to $V_{\rm BIAS}$ so that none of the other parameters change

CS amplifier with current source supply is a good voltage amplifier (R_{in} high and $|A_{vo}|$ high), but R_{out} high too \Rightarrow voltage gain degraded if $R_L \ll r_o//r_{oc}$.

What did we learn today?

Summary of Key Concepts for CS amplifier

- Bias Calculations
- Signal Swing
- Small Signal Circuit Parameters
 - Voltage Gain A_{VO}
 - Transconductance G_m
 - Input Resistance R_{in}
 - Output Resistance R_{out}
- Relationship between small signal circuit and device parameters