Lecture 13 Circuits numériques (III) Circuits CMOS

Outline

- CMOS Inverter: Propagation Delay
- CMOS Inverter: **Power Dissipation**
- CMOS: Static Logic Gates

1. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic Operation:

•
$$V_{IN} = 0 \implies V_{OUT} = V_{DD}$$

 $- V_{GSn} = 0 (\langle V_{Tn} \rangle \implies NMOS OFF$
 $- V_{SGp} = V_{DD} (\rangle \cdot V_{Tp}) \implies PMOS ON$
• $V_{IN} = V_{DD} \implies V_{OUT} = 0$
 $- V_{GSn} = V_{DD} (\rangle V_{Tn}) \implies NMOS ON$
 $- V_{SGp} = 0 (\langle \cdot V_{Tp} \rangle \implies PMOS OFF$

No power consumption while idle in any logic state!

6.012 Spring 2004

2. CMOS inverter: Propagation delay

Inverter propagation delay: time delay between input and output signals; figure of merit of logic speed.

Typical propagation delays: < 100 ps.

Complex logic system has 10-50 propagation delays per clock cycle.

Estimation of t_p: use square-wave at input

Average propagation delay:

$$\mathbf{t}_{\mathbf{p}} = \frac{1}{2} \left(\mathbf{t}_{\mathbf{PHL}} + \mathbf{t}_{\mathbf{PLH}} \right)$$

During early phases of discharge, NMOS is saturated and PMOS is cut-off.

Time to discharge *half* of charge stored in C_L :.

$$t_{pHL} \approx \frac{\frac{1}{2} \text{ charge on } C_L @t = 0^-}{\text{NMOS discharge current}}$$

CMOS inverter: Propagation delay high-to-low (contd.)

Charge in
$$C_L$$
 at t=0:

$$\mathbf{Q}_{\mathbf{L}} \left(\mathbf{t} = \mathbf{0}^{-} \right) = \mathbf{C}_{\mathbf{L}} \mathbf{V}_{\mathbf{D}\mathbf{D}}$$

Discharge Current (NMOS in saturation):

$$\mathbf{I}_{\mathbf{Dn}} = \frac{\mathbf{W}_{\mathbf{n}}}{2\mathbf{L}_{\mathbf{n}}} \mu_{\mathbf{n}} \mathbf{C}_{\mathbf{ox}} (\mathbf{V}_{\mathbf{DD}} - \mathbf{V}_{\mathbf{Tn}})^2$$

Then:

$$\mathbf{t}_{PHL} \approx \frac{\mathbf{C}_{L} \mathbf{V}_{DD}}{\frac{\mathbf{W}_{n}}{\mathbf{L}_{n}} \, \mu_{n} \mathbf{C}_{ox} \left(\mathbf{V}_{DD} - \mathbf{V}_{Tn}\right)^{2}}$$

Graphical Interpretation

6.012 Spring 2004

During early phases of discharge, PMOS is saturated and NMOS is cut-off.

Time to charge to *half* of final charge on C_L :.

$$t_{PLH} \approx \frac{\frac{1}{2} \text{ charge on } C_L @t = \infty}{\text{PMOS charge current}}$$

CMOS inverter: Propagation delay high-to-low (contd.)

Charge in C_L at $t=\infty$:

$$\mathbf{Q}_{\mathbf{L}}(\mathbf{t}=\infty)=\mathbf{C}_{\mathbf{L}}\mathbf{V}_{\mathbf{D}\mathbf{D}}$$

Charge Current (PMOS in saturation):

$$-\mathbf{I}_{\mathbf{D}\mathbf{p}} = \frac{\mathbf{W}_{\mathbf{p}}}{2\mathbf{L}_{\mathbf{p}}} \,\mu_{\mathbf{p}} \mathbf{C}_{\mathbf{o}\mathbf{x}} \left(\mathbf{V}_{\mathbf{D}\mathbf{D}} + \mathbf{V}_{\mathbf{T}\mathbf{p}}\right)^{2}$$

Then:

$$\mathbf{t}_{PLH} \approx \frac{\mathbf{C}_{L} \mathbf{V}_{DD}}{\frac{\mathbf{W}_{p}}{\mathbf{L}_{p}} \mu_{p} \mathbf{C}_{ox} \left(\mathbf{V}_{DD} + \mathbf{V}_{Tp}\right)^{2}}$$

Key dependencies of propagation delay:

•
$$V_{DD} \uparrow \Rightarrow t_p \downarrow$$

- Reason: $V_{DD} \uparrow \Rightarrow Q(C_L) \uparrow$, but I_D goes as square \uparrow
- Trade-off: $V_{DD} \uparrow \Rightarrow$ more power consumed.

•
$$L \downarrow \Rightarrow t_p \downarrow$$

- Reason: $L \downarrow \Rightarrow I_D \uparrow$
- Trade-off: manufacturing cost!

Components of load capacitance C_L:

- *Following logic gates*: must add capacitance of each gate of every transistor the output is connected to.
- *Interconnect wires* that connects output to input of following logic gates
- Own drain-to-body capacitances

 $\mathbf{C_L} = \mathbf{C_G} + \mathbf{C_{wire}} + \mathbf{C_{DBn}} + \mathbf{C_{DBp}}$

Gate Capacitance of Next Stage

- Estimation of the input capacitance:
 - n- and p-channel transistors in the next stage switch from triode through saturation to cutoff during a high-low or low-high transition
- Requires nonlinear charge storage elements to accurately model
- Hand Calculation use a rough estimate for an inverter

$$C_{in} = C_{ox} (WL)_p + C_{ox} (WL)_n$$

CG for example circuit

$$C_G = C_{ox}(WL)_{p2} + C_{ox}(WL)_{n2} + C_{ox}(WL)_{n3}$$

Interconnect Capacitance

• "Wires" consist of metal lines connecting the output of the inverter to the input of the next stage

• The p+ layer (i.e., heavily doped with acceptors) under the thick thermal oxide (500 nm = 0.5 mm) and deposited oxide (600 nm = 0.6 mm) depletes only slightly when positive voltages appear on the metal line, so the capacitance is approximately the oxide capacitance:

$\mathbf{C}_{\text{wire}} = \mathbf{C}_{\text{thickox}} \left(\mathbf{W}_{\text{m}}^* \mathbf{L}_{\text{m}} \right)$

where the oxide thickness = $500 \text{ nm} + 600 \text{ nm} = 1.1 \mu \text{m}$.

For large digital systems, the parasitic wiring capacitance can dominate the load capacitance

6.012 Spring 2004

Calculation of Parasitic Drain/Bulk Junction Depletion Capacitance

• Depletion $q_J(v_D)$ is non-linear --> take the worst case and use the zerobias capacitance C_{jo} as a linear charge-storage element during the transient.

• "Bottom" of depletion regions of the inverter's drain diffusions contribute a depletion capacitance:

$\mathbf{C}_{\mathbf{JBOT}} = \mathbf{C}_{\mathbf{Jn}}(\mathbf{W}_{\mathbf{n}}\mathbf{L}_{\mathbf{diffn}}) + \mathbf{C}_{\mathbf{Jp}}(\mathbf{W}_{\mathbf{p}}\mathbf{L}_{\mathbf{diffp}})$

Where: C_{Jn} and C_{Jp} are the zero-bias bottom capacitance (fF/ μ m²) for the n-channel and p-channel MOSFET drain-bulk junction, respectively.

Typical numbers: C_{Jn} and C_{Jp} are about 0.2 fF/ μ m²

• "Sidewall" of depletion regions of the inverter's drain diffusions make an additional contribution:

$C_{JSW} = (W_n + 2L_{diffn})C_{JSWn} + (W_p + 2L_{diffp})C_{JSWp}$

Where: C_{JSWn} and C_{JSWp} are the zero-bias sidewall capacitance (F/µm) for the n-channel and p-channel MOSFET drain-bulk junction, respectively.

Typical numbers: C_{JSWn} and C_{JSWp} are about 0.5 fF/µm

The sum of C_{JBOT} and C_{JSW} is the total depletion capacitance, C_{DB}

Power Dissipation

• Energy from power supply needed to charge up the capacitor:

$$E_{ch} \arg e = \int V_{DD} i(t) dt = V_{DD} Q = V_{DD}^2 C_L$$

• Energy stored in capacitor:

$$E_{store} = 1/2C_L V_{DD}^2$$

• Energy lost in p-channel MOSFET during charging:

$$E_{diss} = E_{charge} - E_{store} = 1/2C_L V_{DD}^2$$

•During discharge the n-channel MOSFET dissipates an identical amount of energy.

•If the charge/discharge cycle is repeated f times/second, where f is the clock frequency, the dynamic power dissipation is:

$$P = 2E_{diss} * f = C_L V_{DD}^2 f$$

In practice many gates do not change state every clock cycle which lowers the power dissipation.

CMOS Static Logic Gates

CMOS NAND Gate

I-V Characteristics of n-channel devices

• Effective length of two n-channel devices is $2L_n$

• $K_{neff} = k_{n1}/2 = k_{n2}/2$ Recall $k_n = W/L\mu_nC_{ox}$

•Effective width of two p-channel devices is $2W_p$ BUT worst case only one device is on

•
$$K_{peff} = k_{p3} = k_{p4}$$

Calculation of static and transient performance for NAND Gate

• $k_{peff} = k_{neff}$ is desirable for equal propagation delays and symmetrical transfer characteristics

• If
$$\mu_n = 2\mu_p$$

• Therefore
$$(W/L)_n = (W/L)_p$$

for 2-input NAND gate

•In general for an M-input NAND Gate

$$\left(\frac{W}{L}\right)_{n} = \frac{M}{2} \left(\frac{W}{L}\right)_{p}$$

What did we learn today?

Summary of Key Concepts

Key features of CMOS inverter:

- No current between power supply and ground while inverter is idle in any logic state
- "rail-to-rail" logic
 - Logic levels are 0 and V_{DD} .
- High $|A_v|$ around the logic threshold
 - \Rightarrow Good noise margins.

CMOS inverter logic threshold and noise margins engineered through W_n/L_n and W_p/L_p .

Key dependencies of propagation delay:

•
$$V_{DD} \uparrow \Rightarrow t_p \downarrow$$

• $L \downarrow \Rightarrow t_p \downarrow$

Power dissipation CV²f Sizing static gates