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Outline of the presentation

I. Role of a frequency converter in pump and fan
systems

II. Sensorless estimation of the system operational
state

III. Identification of system characteristics

IV. Energy efficient system control with variable-speed
usage

V. Identification of operational states that reduce the
é\system lifetime or cause an immediate failure
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Part I: Role of a frequency converter in
pump and fan systems
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Frequency converter allows variable-
speed system operation

High pump efficiency &
poor system efficiency
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Frequency converter as a sensorless
measurement unit
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Estimation accuracy of a DTC frequency
converter

37 kW, 1480 rpm induction motor Torque estimation errors within 4.9 Nm (2.1 %)
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Ref.: T. Ahonen et al., “Accuracy study of frequency converter estimates used in
the sensorless diagnostics of induction-motor-driven systems,” in Proc. EPE 2011
Conf., pp. 1-10.

International Conference on Electrical Machines




Life-cycle costs in pump and fan systems
dominated by energy, bounded by design

Production Investment
losses 14 % 7 %
Malntenance
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Role of a frequency converter in LCC
efficient pump and fan systems

Objective 1: Minimize the system energy cost

IV.

Objective 2: Minimize the system maintenance

cost

ntification of | L.
IV |Identification o

Energy efficient system System system operation .
. . . system operation
control with variable performance states causing ,
o . states causing
speed use monitoring accelerated life-time . . .
. immediate failure
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‘ System identification : . Estimation of system operation state

Measurements of frequency converter, usage of FC as a signal source, system models with input data
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Part II: Sensorless estimation of the
system operational state
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Sensorless system state estimation by a
frequency converter

Frequency converter (VSD)

Flow rate/pressure Speed control loop Torque control loop
control loop
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estimates for the system
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A parameter-adjustable pump
or fan model can be
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converter control scheme.
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QP-curve-based pump model
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Ref.: T. Ahonen et al., “Estimation of pump operational state with model-based
methods,” Energy Conversion and Management, vol. 51, no. 6, pp. 1319-1325,
June 2010.
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Operation of a QP-curve-based pump
model
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Estimation accuracy of the QP-curve-
based pump model

Head (m)
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Pilot test results for an industrial pulp
pump system

0 200 400 600 800 1000

40 Flow rate (I/s)
 Sulzer ARP54-400 centrifugal pump 30
- Typical pump eff. 76%, max. eff. 85% 5
- Typical pump power cons. 240 kW 20

£
- 9% efficiency improvement equals -
25kW lower power consumption 10

0 30-40 50-60 70-80 90-100 110-120
Relative flow rate (%) m
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Part III: Identification of system
characteristics
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Surrounding system characteristics

- Pump/fan operating point lies in the intersection of the
device and surrounding process characteristic curves
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Ref.: T. Ahonen et al., “Generic unit process functions set for pumping systems,” in m
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State estimation with the process-curve-
based pump model
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Ref.: T. Ahonen et al., “Estimation of pump operational state with model-based
methods,” Energy Conversion and Management, vol. 51, no. 6, pp. 1319-1325, = ZE

June 2010.
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Identification of the surrounding system

- H, and k can be determined with applicable QP curve
model estimates (Q.., H.) USiNng the LMS method
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Ref.: T. Ahonen et al., “Frequency-converter-based hybrid estimation method for m
the centrifugal pump operational state,” IEEE Trans. Ind. Electron., vol. 59, no. 12, e
pp. 4803—-4809, December 2012.



Combined (hybrid) usage of the pump
models

— Process-curve-based model is used when operating on
the flat part of the QP curve

Process curve
A model is used
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QP curve model
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Estimation accuracy of the process-
curve-based pump model

— Process curve parameters were determined with 11 QP
curve model estimates at 1160-1620 rpm
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Part IV: Energy efficient system control
with variable-speed usage

&
Open your mind. LUT. @I

Lappeenranta University of Technology et fonal Conference on Electr ical Machines



How to achieve the minimum energy
consumption?

1. Drive the system as energy efficiently as possible
2. Minimize the hydraulic losses (H, k)

3. Use high efficiency components in the system
Hst=5-10 m, k=0.0149
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Energy efficient filling of a reservoir with
a variable-speed pumping system

~ Variable-speed operation allows energy efficient filling of
a reservoir, but at which rotational speeds?




System identification and determination
oAf an optimum rotational speed profile

—~ H =5-10 m, k=0.0149
mE st
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« Surrounding system and the pumping

task are identified during the first run

- E. charts (curves) are determined for
Hg 1 and Hy , cases

- Rotational speed profile is formed
with the E, chart information
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Simulation results for a reservoir filling

application
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- System: H,=5-10 m, k=0.0149,
3.75 m3 per reservoir filling
 Pump: Sulzer APP22-80, 1450 rpm

Minimum energy consumption is
achieved with the linear speed profile
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Compensation of an oversized pump with
variable-speed usage

Correctly sized pump Oversized pump
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« Pump: Sulzer APP22-80 with a larger
impeller resulting in a 5-10 % higher
output than needed

- Difference in E; is at smallest around

1050 rpm ICEM




Part V: Identification of operational
states that reduce the system lifetime
or cause an immediate failure
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Pump cavitation and fluid recirculation,
fan stalling
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Frequency-converter-based, sensorless
detection of cavitation or stalling

Determine nrusn
and TRMS,N when the 1563

pump operates near

the BEP 1562

* 1561 Cavitation (max.
flow)
Calculate the 1560 9 '\ - Average speed at
present Nrus 1559 max. flow
and Trms
1558

1557
Pump is
Is nRMs/nRMS,N over Is TRMS/TRMS,N over Operating 1 M-1
) ?
the threshold value? the threshold value? normally Xpe (N) = m x(n — k)
k=0
Xac (n) = x(n)— xpc(n)
M-1
v PXE
Xrms (1) = \/ﬁ Xac(n—K)
Cavitation k=0
may occur in
the pump

Ref.: T. Ahonen et al., “Novel method for detecting cavitation in centrifugal pump
with frequency converter,” Insight, vol. 53, no. 8, August 2011.
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Test results

Serlachius 1500 rpm
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Detection of contamination in a fan
impeller

—- Impeller contamination is a root cause for several
imbalance- and vibration-related faults in fans
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Ref.: J. Tamminen et al., “Detection of Mass Increase in a Fan Impeller with a
Frequency Converter,” IEEE Trans. on Ind. Electron., Digital Object Identifier:
10.1109/TIE.2012.2207657, 2012.
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Operation of the fan impeller
contamination detection algorithm
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Test results

—~ Method has been successfully verified by laboratory

measurements
160
120 | = —
o
2 80 | — 1 =
©
=
IR | e | B |
I Actual mass
I Est. mass T_=30%

2 3
Measurement set

Ref.: J. Tamminen et al., “Detection of mass increase in a fan impeller with a
frequency converter,” IEEE Trans. on Ind. Electron., Digital Object Identifier:
10.1109/TIE.2012.2207657, 2012.
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Summary
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Role of the frequency converter in LCC
optimization of pump and fan systems

Detection of
operational

System
states degrading performance
system lifetime: monitoring:

cawtgtlon, On-line specific
_ stalll_ng, energy consumption
recirculation, dry- estimation, wear and
running, _ air filter
contamination Production Investment contamination
build-up, etc. losses 14 % 7 %

etection, etc.
Maintenance —

4 %

& /

Energy efficiency
optimization:
parallel pumping,
compensation of
oversizing, optimal
speed profiles, etc.
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Main points

I. Frequency converter is a versatile tool with
monitoring and diagnostic abilities

II. Sensorless pump and fan system operation
estimation is possible with dedicated models

III. Frequency converter by itself does not realize
energy efficient system operation

IV. Identification of adverse operational states can
effectively decrease the risk of system faults
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