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Outline of the presentation

I. Role of a frequency converter in pump and fan 
systems

II. Sensorless estimation of the system operational 
state

III. Identification of system characteristics

IV. Energy efficient system control with variable-speed 
usage

V. Identification of operational states that reduce the 
system lifetime or cause an immediate failure



Part I: Role of a frequency converter in 
pump and fan systems
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Frequency converter as a sensorless
measurement unit

– Converters with internal current and 
voltage measurements can provide 
estimates for
• Rotational speed, shaft torque and 

power
• Motor current and temperature
• System energy consumption
• System run-time

– These can be used to determine
• System operational state (flow rate, 

head, efficiency)
• System energy efficiency Es (kWh/m3)
• Distribution of flow rate, Es etc.



Estimation accuracy of a DTC frequency 
converter

Ref.: T. Ahonen et al., “Accuracy study of frequency converter estimates used in 
the sensorless diagnostics of induction-motor-driven systems,” in Proc. EPE 2011 

Conf., pp. 1–10.

Speed estimation errors within 3.1 rpm (0.2 %) Power estimation errors within 0.77 kW (2.1 %)

37 kW, 1480 rpm induction motor Torque estimation errors within 4.9 Nm (2.1 %)



Investment
7 %

Energy
75 %

Maintenance 
4 %

Production 
losses 14 %

Life-cycle costs in pump and fan systems 
dominated by energy, bounded by design
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6 %
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Role of a frequency converter in LCC 
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Part II: Sensorless estimation of the 
system operational state



Sensorless system state estimation by a 
frequency converter

QP-curve-based
pump modelnest
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The model provides 
estimates for the system 
operational state and energy 
efficiency that can be further 
used for process 
identification and energy 
efficiency optimization.

A parameter-adjustable pump 
or fan model can be 
implemented into the 
converter control scheme. QP and QH curves

at nnom



QP-curve-based pump model

QP-curve-based
pump modelnest
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Ref.: T. Ahonen et al., “Estimation of pump operational state with model-based 
methods,” Energy Conversion and Management, vol. 51, no. 6, pp. 1319–1325, 

June 2010.



Operation of a QP-curve-based pump 
model
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Estimation accuracy of the QP-curve-
based pump model

50% flow rate 100% flow rate 140% flow rate
| Q/Q| < 8% | Q/Q| < 6% | Q/Q| < 20% at 1320/1560 rpm



Pilot test results for an industrial pulp 
pump system
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• Sulzer ARP54-400 centrifugal pump
• Typical pump eff. 76%, max. eff. 85%
• Typical pump power cons. 240 kW
• 9% efficiency improvement equals 

25kW lower power consumption



Part III: Identification of system 
characteristics
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– Pump/fan operating point lies in the intersection of the 
device and surrounding process characteristic curves

Ref.: T. Ahonen et al., “Generic unit process functions set for pumping systems,” in 
Proc. EEMODS 2011 Conf.
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Ref.: T. Ahonen et al., “Estimation of pump operational state with model-based 
methods,” Energy Conversion and Management, vol. 51, no. 6, pp. 1319–1325, 

June 2010.
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– Hst and k can be determined with applicable QP curve 
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Ref.: T. Ahonen et al., “Frequency-converter-based hybrid estimation method for 
the centrifugal pump operational state,” IEEE Trans. Ind. Electron., vol. 59, no. 12, 

pp. 4803–4809, December 2012.



Combined (hybrid) usage of the pump 
models

– Process-curve-based model is used when operating on 
the flat part of the QP curve

QP curve model
is used

Process curve
model is used

Process curve
model is used



Estimation accuracy of the process-
curve-based pump model
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– Process curve parameters were determined with 11 QP
curve model estimates at 1160–1620 rpm



Part IV: Energy efficient system control 
with variable-speed usage
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How to achieve the minimum energy 
consumption?

1. Drive the system as energy efficiently as possible
2. Minimize the hydraulic losses (Hst, k)
3. Use high efficiency components in the system
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Ref.: T. Ahonen et al., “Generic unit process functions set for pumping systems,” in 
Proc. EEMODS 2011 Conf.



Energy efficient filling of a reservoir with 
a variable-speed pumping system
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– Variable-speed operation allows energy efficient filling of 
a reservoir, but at which rotational speeds?
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• Surrounding system and the pumping 
task are identified during the first run

• Es charts (curves) are determined for 
Hst,1 and Hst,2 cases

• Rotational speed profile is formed 
with the Es chart information



Simulation results for a reservoir filling 
application

• System: Hst=5-10 m, k=0.0149, 
3.75 m3 per reservoir filling

• Pump: Sulzer APP22-80, 1450 rpm
• Minimum energy consumption is 

achieved with the linear speed profile



Compensation of an oversized pump with 
variable-speed usage

• Pump: Sulzer APP22-80 with a larger 
impeller resulting in a 5-10 % higher 
output than needed

• Difference in Es is at smallest around
1050 rpm



Part V: Identification of operational 
states that reduce the system lifetime 

or cause an immediate failure



Pump cavitation and fluid recirculation, 
fan stalling
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Frequency-converter-based, sensorless
detection of cavitation or stalling
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Ref.: T. Ahonen et al., “Novel method for detecting cavitation in centrifugal pump 
with frequency converter,” Insight, vol. 53, no. 8, August 2011.



Test results
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Detection of contamination in a fan 
impeller
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Ref.: J. Tamminen et al., “Detection of Mass Increase in a Fan Impeller with a 
Frequency Converter,” IEEE Trans. on Ind. Electron., Digital Object Identifier: 

10.1109/TIE.2012.2207657, 2012.

– Impeller contamination is a root cause for several 
imbalance- and vibration-related faults in fans



Operation of the fan impeller 
contamination detection algorithm
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Test results

Ref.: J. Tamminen et al., “Detection of mass increase in a fan impeller with a 
frequency converter,” IEEE Trans. on Ind. Electron., Digital Object Identifier: 

10.1109/TIE.2012.2207657, 2012.

– Method has been successfully verified by laboratory 
measurements
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Summary



Investment
7 %

Energy
75 %

Maintenance 
4 %

Production 
losses 14 %

Energy efficiency 
optimization: 

parallel pumping, 
compensation of 

oversizing, optimal 
speed profiles, etc.

Role of the frequency converter in LCC 
optimization of pump and fan systems
Detection of 
operational 

states degrading 
system lifetime:

cavitation, 
stalling, 

recirculation, dry-
running, 

contamination 
build-up, etc.

System 
performance 
monitoring: 

On-line specific 
energy consumption 
estimation, wear and 

air filter 
contamination 
detection, etc. 



Main points

I. Frequency converter is a versatile tool with 
monitoring and diagnostic abilities 

II. Sensorless pump and fan system operation 
estimation is possible with dedicated models

III. Frequency converter by itself does not realize 
energy efficient system operation

IV. Identification of adverse operational states can 
effectively decrease the risk of system faults


