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The big picture — The flows of produced,
used and wasted energy Iin USA
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Source: LLNL 2011. Data is based on DOE/EIA-0384(2010), October 2011. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
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World primary energy use by fuel 1850-2011
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World energy transitions 1850-2011

Increasing quality of the primary fuel
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Quality and guantity of energy resources

THE NET ENERGY CLIFF
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Low EROI oil production (EROI1—-3:1)

40 x 30 km

Athabasca tar sands, Canada (production 1.5 Mbarrels/day ~ 2 %
world use)



Another side - Quality of non-energy
resources declines simultaneously
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Bingham Canyon, Utah, USA
World’s largest open pit copper mine, depth 1.2 km, > 400 000 tons of material removed daily
Copper content of ore 0.6 %, produces about 15 % of yearly copper use of USA
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Crude oll discoveries and production
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The big picture — Implications

The energy efficiency, in general, from primary energy to energy services
should be the optimization objective

The two most significant sources of waste: electricity generation &
transportation

Efficiency of primary energy conversion from coal or gas to electricity
— Limitations by thermodynamics and material technology

— The utilization of CCS adds the system costs and drops the efficiency of
power plants further 20-25%

— However, large efficiency improvement potential in the utilization of
waste heat remains in each step of the energy conversion chain

Electricity end-use efficiency

— Due to energy loss in energy conversion chain each saved Joule in the
end use saves from 3-15 Joules of primary energy

— In the end-use the number of actors increases (e.g. from 1000-10000
power companies to 7*10° end users or maybe 7*101° appliances) ->
the role of regulations, education, and efficiency services significant

In short term the electrification of transportation just moves the
consumption from the petroleum to goal and gas (way to combat declining
oil availability). Historically, the change of primary energy source, e.g.
wood-to-coal, coal-to-oil, has taken 50 years. It can be also assumed with
renewables
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Performance of energy transformations -
Carnot’s efficiency for a heat machine

Carnot’s maximum efficiency =
A

T
_1-'2
e =l

Efficiency according to the first
law of thermodynamics

Efficiency according to the
second law of
thermodynamics
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Technology evolution — Maximum thermal
efficiency of prime movers
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Efficiency of pumps at optimal rotation
speed
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Standard efficiency level curves for 4-pole
50 Hz low-voltage three-phase motors
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Source: CEMEP, Electric motors and variable speed drives — Standards and legal
requirements for the energy efficiency of low-voltage three phase motors, October 2010.




Productivity of research investments
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Specific energy ‘“consumption” of an energy
conversion process

Specific energy consumption of energy
conversion process

Only marginal

Economical minimum improvements possible

Technical minimum

Theoretical minimum flf ¢

Time
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From diminishing returns of R&D In energy
efficiency to radical improvements?

High

Efficiency gain
curve

Cost of
efficiency

gain
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Systems approach — Widening the system boundaries &

studying the whole energy conversion system against the

correct efficiency metrics

Immature technology

Significant efficiency

improvement potential

exists

e.g. pumping systems, fan

systems, compressor
systems

Mature technology
Efficiency close to the
theoretical (or practical
maximum,
incremental research
e.g. pumps, fans,

Maturity of technology
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Rebound effect in energy efficiency -
Background

4 times of work for the same amount of coal

(Tlré%n:;asjl-\;ezvg;ogz?nse ‘ James Watt’s (1736 —1819) engine

100
_ Steam Engme Efﬁ01ency
S
o :
2 10 Horizontal Condensing _m

Compound Engine
2 N
E i _-_"“&7./’ — Vertical Condensing
3 Watt Triple Expansion
3
U) .1-/ [ |
% /-!I \.Smeaton |
J— ] Newlcomen Source: Grant Walker,
0.1 T\"Atmospheric Uof (;j'algalyI (ret'd)l.
1700 1750 1800 1850 1900 1950 2000
Year Engine Invented
14.8.2012 I@



Rebound effect — Jevons’ paradox

In 1865 English economist William Stanley Jevons published a
book: "The Coal Question: An Inquiry Concerning the Progress of
the Nation, and the Probable Exhaustion of our Coal-Mines”

“When improvements in technology make it possible to use fuel
more efficiently, the consumption of to fuel tends to go up, not
down”

Figure 1. William Stanley Jevons,
[source: wikipedia]
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Energy efficiency and CO, emissions

Marginal cost (USD/t CO,)
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Energy efficiency and CO, emissions — more
detailed view

Exhibit 6
V2.1 Global GHG abatement cost curve beyond BAU — 2030
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GDP vs. Energy Efficiency in Top 40
Economies

GDP vs. Energy Efficiency
(Top 40 Economies by GDP)
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Part 111: Electric energy consumption in
electric motors
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Electrical energy use in electrical motors

In EU area electric motors are responsible for 69 % of total electricity

consumption of industry sector and 38 % of services sector

62 9% used in pumps, ® Pumps 81 9% used in pumps,
fans and compressors fans and compressors

® Fans
7 %
_ 11 % B Pumps
m Air compressors
mFans
m Cooling m Refridgeration
Do compressors m Air conditioning
0
m Conveyors m Conveyors

7 %

m Other motors
_ o ® Other motors
Figure. Share of motor electricity

) - _ Figure. Share of motor electricity
consumption by end-use in industrial sector

consumption by end-use in services sector

Source: Anibal. T. de Almeida, Paula Fonseca, Hugh Falkner, and Paolo Bertoldi, Market transformation of energy-
efficient motor technologies in the EU, in Energy Policy, 31, 2003, pp. 563-575.




The electric energy use of electric motors In
Industrial sector by power range

In industry P, = 10 kW motors are responsible for more than 80 % of electrical

energy consumption
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Energy conversion chain example —
Efficiency of liquid pumping

= Due to losses in the energy conversion chain

* Saved Joule close to the end use location may result up 10 J savings in the
primary energy

By improving end use efficiency the amount of delivered energy decreases
resulting up lesg capital investments in the energy conversion chain
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Figure. Efficiency of the energy conversion process from the primary energy to the
potential and kinetic energy of the moved fluid I@
14.8.2012




Part 1V: Life-cycle-costs in pumping and fan
systems
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LCC case study — Pulp pump in a paper mill

= Supplies pulp to the paper machine
— Ahlstrom ARP 54-400 centrifugal pump
— 400 kW 6 pole Stromberg induction motor
— ABB ACS 600 frequency converter
— Malfunction will cease the paper production (5000
€/h)
— Calculation period was 10 years
— Energy price: 55 €/MWh
— Power requirement 400 kw, 8000 h/a
— Interest rate: 4 %/a, inflation 1.6 %/a

= Maintenance costs and the amount of possible
production losses were estimated by forming the
FMECA for the drive on the basis of interviews and
maintenance logs

Source: T. Ahonen, J. Ahola, J. Kestilg, R. Tiainen and T.

Lindh, "Life-cycle cost analysis of inverter driven pump”,

in the Proceedings of Comadem 2007, 12-15™ June, Faro,
Portugal, 2007.
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LCC Case study — Exhaust blower in a pulp
mill

= Responsible for the exhaust of steam from the heat
recovery system in a pulp mill

Fan: 986rpm, 41.2m?3/s, 1950Pa
Motor: 132kW, 986rpm

Driven by frequency converter
Energy price: 50 €/ MWh

Power requirement 100 kW, 7000 h/a
Interest rate 4%/a, inflaation 1.6 %/a

=  Critical for the production

The failure of the fan stops the pulp drying fan

After eight hours the pulp production has to be
stopped

Estimated cost of failure is 10k€/h (production
losses)

Calculation time 15 years

14.8.2012

Source: Jussi Tamminen, Tero Ahonen, Jero Ahola and
Juha Kestild, ” Life Cycle Costs in Industrial Fan Drives —
Case Study”, in the Proceedings of BINDT 2010,

Birmingham, UK, 2010
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The results of LCC estimations

E.g. 80 % of all LCC costs is bound

In the design and investment phase

Exhaust blower
Pen=132 KW, period =15a

Pulp pump
P.n=400 KW, period = 10

4%
® Investment

m [nvestment

Energy Energy
® Maintenance ® Maintenance
® Production losses 6 % ® Production losses
75 % 58 %




Part V: How to improve energy efficiency In
pumping and fan systems
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System energy efficiency
analysis and optimization

Efficient Energy Use — The main queStionS

How to estimate the minimum primary
energy input for defined product or service?
What is the added value of energy?

Material input

How to measure the service or
product (amount, function,...)?

Energy input System converting Product or service
energy (and materials) to
produce products or

Energy discharge

What is the potential to minimise discharge?
How to estimate and classify recovery and
upgrade potential?

14.8.2012

services

How the system boundaries affect results?

How to identify the most promising improvement
alternatives?

How define objective(s) and to formulate
optimization problem to handle industrially relevant

problems?




What is the correct energy efficiency metrics
for the energy conversion process?

Efficiency of production measured with metrics kWh/t?

However, the main function of paper is to operate as information surface
(metrics kWh/m?2)
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What is the correct energy efficiency metrics
for the energy conversion process?

Components of pumping systems are designed with efficiency at nominal point (BEP)
However, the energy efficiency metrics for the user of pumping system is (kWh.,/m3)

High pump efficiency &
poor system efficiency 100

30
Flow rate (1/s)

40

Poor pump efficiency &
high system efficiency
14.8.2012




Design and optimization guidelines to
energy efficient system

Traditional optimization: Investment

" The efficiency investments are decided costs
on device level (additional cost vs. A
saved energy)

Widening the system boundaries:

0 Over-investment in the end of the Economic limit
energy conversion chain may bring S
along even more savings elsewhere in
the energy chain

]
]
:
" Co-benefit: the system reliability may Economlca.ll. :
improve energy efficiency E
' Target state
Examples: >avings : '
: : . ' with systems
™ Over-insulation of building — both !
. : | approcach
heating and cooling system may H
become un-necessary , e
!
" Extremely high efficiency inverters and Starti . R >
motors -> no need of active cooling, tarting point Savings in energy costs

improved reliability reference system - o
. . .. . . Amory Lovins and Rocky Mountain Institute, Reinventing Fire
. Over-dimensioned piping in _pumplng —Bold Business Solutions for the New Energy Era, Chelsea
systems, decreased pump size, motor Green Publishing Company, 2011, USA.

size and inverter size
14.8.2012



Piping Is often designed based on beauty
and placement of pumps and motors instead
of optimization of energy efficiency

. Figure. Old pumping system
Lecture 2: Industry (Amory Lovins 9 Iaboral'[c)ory ri)n I?UTy
2007)
14.8.2012 I@




Example — The importance of piping design

CASE A: CASE B: CASE C:

friction loss friction loss = friction
loss 28

100%
- 60 % from e

CASEA CASE A
2 * 90 deg bends & 20 m 2 * 45 deg bends & 14 m of steel piping, pump placed
of steel piping 14 m of steel piping according to optimal piping
90 deg

45 deg Q

Y

Parameter values used in example:
X =10 m, D = 0.5 m, f;= 0.02 ,Kyq = 30*f,

— X
hdyn,bends :E i Kas = 16%F I@
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Speed control of a pump - The main tool for
the energy savings in pumping systems with
centrifugal pumps

QH-curves of a pump: Rotation speed control
allows the flow rate or pressure control of a

Required system head an electrical
power of the pump

centrifugal pump without adjusting system
curve

A Constant efficiency hys (Q,) = hy +kQ,
lines of the pump

Pe = nfcnemnp pg hsys Qv

P S system /0
< curve /- . _
' e Affinity equations, the effect of
> ’ . - rotation speed change to the pump
L — O e _ Best efficiency-area
) of the pump )
hs 52 = '/"' n
y ”" h ) (_j | hn
hsys,3 N R s IR R nn

-
O"
.

..... n
E Qv = (_j : Qv,n
E n,
1, :
Flow rate (m 3/s) P = (Lj .

n
nn
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The effect of dynamic head and control
method to the energy efficiency of pumping

Case 1: Static operation point, high friction Case 2: Throttling control and rotation speed
losses in piping control with the previous example

n A " { System
' =T ipcurve with i
5 throttling System
A
WASTED POWER
with throttling
het x BEP of pump h, control BEP of pump
WASTED POWER yn.th
with throttling
i or rotation speed ;
control WASTED FOWER
hdymcI with rotati:on spee
Y = control i
MINIMUM REQUIRED SIS
ha || power : h, REQUIRED : .
; POWER : :
1 —> i i —>
Q, Flowrate(m °/s) Q, Q, Flow rate (m 3/s)



The dimensioning iIs also In a key role In the
energy efficiency of the electric motor
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i T(n)=k,n2+a

T()=k,n? + b

150H |1 D A N
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%

s0f |\

500 1000 1500 2000 2500 3000 3500 4000 4500
rpm

Figure. Efficiency map of an induction motor with two system curves for a

pumping process
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Would it be wise to try to adapt instead

of trying to change dimensioning
practices?

Only the energy efficiency that comes true is important — High efficiency

system components, control methods and algorithms are just tools for
this purpose

Electric
power

adaptability

Pumpingor fan

Liquid/gas flow system

Liquid/gas flow

Power loss / heat power
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The role of frequency converter in life-cycle
cost efficient pumping and fan systems
(system operation phase)

Objective 2: Minimize the system maintenance
cost

Objective 1: Minimize the system energy cost

Identification of N
- . Identification of
Energy efficient system System system operation .

. : . system operation

control with variable performance states causing .

L o states causing

speed use monitoring accelerated life-time : : ;

. immediate failure
reduction

System identification Estimation of system operation state

Measurements of frequency converter, usage of FC as a signal source, system models with input data




o
Conclusion

5 There are several drivers forcing to improve end use energy
efficiency

5 The main sources of “wasted primary energy” are the generation
of electricity and transportation

= Energy efficiency is the only means mitigating the climate change
having the negative cost

= Role of correct metrics in optimization of energy efficiency is
essential

= The systems approach makes it possible to improve energy
efficiency radically

— Helps to avoid sub-optimization
— Requires multi-disciplinary team
= Energy efficiency is not just technology
— Technology provides means
— Solutions are required to implement energy savings in practice
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